Abstract

This work presents an experimental–numerical approach aimed at determining the chip–tool contact length during orthogonal cutting of annealed AISI 4340 steel (223 HV) with TiN-coated tungsten carbide inserts. Initially, pin-on-disc tests were performed, followed by orthogonal cutting tests. The components of the cutting force were used to calculate the coefficient of friction in orthogonal cutting, and its value was compared with those obtained under sliding. Moreover, the cutting force components obtained experimentally were used to assess the reliability of the finite element model and estimate the temperature in the cutting zone. The contact length between chip and rake face was calculated based on the experimental feed force and shear strength of the work material and was compared with the results provided by an analytical model. The experimental–numerical approach can be considered more accurate due to the fact that it considers the effect of the tool–chip interface temperature on the shear strength of the work material. However, the analytical model is quite straightforward, since it only requires the values of chip thickness and undeformed chip thickness to estimate the tool–chip contact length.

References

1.
Merchant
,
M. E.
,
1945
, “
Mechanics of the Metal Cutting Process. I. Orthogonal Cutting and a Type 2 Chip
,”
J. Appl. Phys.
,
16
(
5
), pp.
267
275
.
2.
Zorev
,
N. N.
,
Granovski
,
G. I.
,
Larin
,
M. N.
,
Loladze
,
T.N.
, and
Tretyakov
,
I. P.
,
1967
,
Development of the Science of Metal Cutting
,
Machinostraienie
,
Moscow
, p.
413
.
3.
Trent
,
E. M.
, and
Wright
,
P. K.
,
2000
,
Metal Cutting
, 4th ed.,
Butterworth-Heinemann
,
Woburn
, MA.
4.
Sterle
,
L.
,
Pusavec
,
F.
, and
Kalin
,
M.
,
2019
, “
Determination of the Friction Coefficient in Cutting Processes: Comparison Between Open and Closed Tribometers
,”
Procedia CIRP
,
82
, pp.
101
106
.
5.
Peng
,
B.
,
Bergs
,
T.
,
Schraknepper
,
D.
,
Smigielski
,
T.
, and
Klocke
,
F.
,
2020
, “
Development and Validation of a New Friction Model for Cutting Processes
,”
Int. J. Adv. Manuf. Technol.
,
107
(
11–12
), pp.
4357
4369
.
6.
Puls
,
H.
,
Klocke
,
F.
, and
Lung
,
D.
,
2014
, “
Experimental Investigation on Friction Under Metal Cutting Conditions
,”
Wear
,
310
(
1–2
), pp.
63
71
.
7.
Cristino
,
V. A. M.
,
Rosa
,
P. A. R.
, and
Martins
,
P. A. F.
,
2010
, “
On the Utilization of Pin-on-Disc Simulative Tests for the Calibration of Friction in Metal Cutting
,”
Proc. Inst. Mech. Eng., Part J: J Eng Tribol
,
224
(
2
), pp.
169
177
.
8.
Olsson
,
M.
,
Soderberg
,
S.
,
Jacobson
,
S.
, and
Hogmark
,
S.
,
1989
, “
Simulation of Cutting Tool Wear by a Modified Pin-on-Disc Test
,”
Int. J. Mach. Tools Manuf.
,
29
(
3
), pp.
377
390
.
9.
Smolenicki
,
D.
,
Boos
,
J.
,
Kuster
,
F.
,
Roelofs
,
H.
, and
Wyen
,
C. F.
,
2014
, “
In-Process Measurement of Friction Coefficient in Orthogonal Cutting
,”
CIRP Ann. Manuf. Technol.
,
63
(
1
), pp.
97
100
.
10.
Meier
,
L.
,
Schaal
,
N.
, and
Wegener
,
K.
,
2017
, “
In-Process Measurement of the Coefficient of Friction on Titanium
,”
Procedia CIRP
,
58
, pp.
163
168
.
11.
Piispanen
,
V.
,
1948
, “
Theory of Formation of Metal Chips
,”
J. Appl. Phys.
,
19
(
10
), pp.
876
881
.
12.
Palmer
,
W. B.
, and
Oxley
,
P. L. B.
,
1959
, “
Mechanics of Orthogonal Machining
,”
Proc. Inst. Mech. Eng.
,
173
(
1
), pp.
623
638
.
13.
Lee
,
E. H.
, and
Shaffer
,
B. W.
,
1951
, “
The Theory of Plasticity Applied to a Problem of Machining
,”
J. Appl. Mech.
,
18
(
4
), pp.
405
413
.
14.
Kudo
,
H.
,
1965
, “
Some New Slip-Line Solutions for Two-Dimensional Steady-State Machining
,”
Int. J. Mech. Sci.
,
7
(
1
), pp.
43
55
.
15.
Schulze
,
V.
,
Bleicher
,
F.
,
Courbon
,
C.
,
Gerstenmeyer
,
M.
,
Meier
,
L.
,
Philipp
,
J.
,
Rech
,
J.
,
Schneider
,
J.
,
Segebade
,
E.
,
Steininger
,
A.
, and
Wegener
,
K.
,
2022
, “
Determination of Constitutive Friction Laws Appropriate for Simulation of Cutting Processes
,”
J. Manuf. Processes.
,
38
, pp.
139
158
.
16.
Feng
,
X.
,
Zhang
,
Y.
,
Hu
,
H.
,
Zheng
,
Y.
,
Zhang
,
K.
, and
Zhou
,
H.
,
2017
, “
Comparison of Mechanical Behavior of TiN, TiNC, CrN/TiNC, TiN/TiNC Films on 9Cr18 Steel by PVD
,”
Appl. Surf. Sci.
,
422
, pp.
266
272
.
17.
Spittel
,
M.
, and
Spittel
,
T.
,
2009
,
Numerical Data and Functional Relationships in Science and Technology, Group VIII: Advanced Materials and Technologies, Volume 2 Subvolume C—Metal Forming Data—Part 1
,
Springer
,
Berlin, Heidelberg
, p.
993
.
18.
Johnson
,
G. R.
, and
Cook
,
W. H.
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
,
Hague, The Netherlands
,
Apr. 19–21
, pp.
541
547
.
19.
Zorev
,
N. N.
,
1963
, “Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting,”
Int. Res. Prod. Eng.
,
N. N.
Zorev
,
G. I.
Granovsky
,
M. N.
Larin
,
T. N.
Loladze
, and
I. P.
Tretyakov
, eds.,
ASME
,
New York
, pp.
42
49
.
20.
Magalhães
,
F. C.
,
Ventura
,
C. E. H.
,
Abrão
,
A. M.
, and
Denkena
,
B.
,
2020
, “
Experimental and Numerical Analysis of Hard Turning With Multi-Chamfered Cutting Edges
,”
J. Manuf. Processes.
,
49
, pp.
126
134
.
21.
Ventura
,
C. E. H.
,
Magalhães
,
F. C.
,
Abrão
,
A. M.
,
Denkena
,
B.
, and
Breidenstein
,
B.
,
2021
, “
Performance Evaluation of the Edge Preparation of Tungsten Carbide Inserts Applied to Hard Turning
,”
Int. J. Adv. Manuf. Technol.
,
112
, pp.
3515
3527
.
22.
Archard
,
J. F.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
23.
Bortoleto
,
E. M.
,
Rovani
,
A. C.
,
Seriacopi
,
V.
,
Profito
,
F. J.
,
Zachariadis
,
D. C.
,
Machado
,
I. F.
,
Sinatora
,
A.
, and
Souza
,
R. M.
,
2013
, “
Experimental and Numerical Analysis of Dry Contact in the Pin on Disc Test
,”
Wear
,
301
(
1–2
), pp.
19
26
.
24.
Kistler Instrumente AG
,
2005
,
4-Component Dynamometer for Cutting Force Measurement in Drilling Type 9272
. http://https://www.kistler.com/files/document/000-153e.pdf
25.
Shulze
,
V.
,
Michna
,
J.
,
Schneider
,
J.
, and
Gumbsch
,
P.
,
2011
, “
Modelling of Cutting Induced Surface Phase Transformations Considering Friction Effects
,”
Procedia Eng.
,
19
, pp.
331
336
.
26.
Iqbal
,
S. A.
,
Mativenga
,
P. T.
, and
Sheikh
,
M. A.
,
2007
, “
Characterization of Machining of AISI 1045 Steel Over a Wide Range of Cutting Speeds. Part 1: Investigation of Contact Phenomena
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
221
(
5
), pp.
909
916
.
27.
Sutter
,
G.
, and
Molinari
,
A.
,
2005
, “
Analysis of the Cutting Force Components and Friction in High Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(
2
), pp.
245
250
.
28.
Zhang
,
C.
,
Lu
,
J.
,
Zhang
,
F.
, and
Butt
,
S. I.
,
2017
, “
Identification of a New Friction Model at Tool-Chip Interface in Dry Orthogonal Cutting
,”
Int. J. Adv. Manuf. Technol.
,
89
(
1–4
), pp.
921
932
.
You do not currently have access to this content.