Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Optimizing bearing performance is based on effective lubrication, especially in high-speed machinery, where minimizing churning and drag losses is of significant importance. Over the past few decades, extensive research has been conducted into the better understanding of different aspects of bearing lubrication. These investigations have employed a combination of experimental methods and advanced computational fluid dynamics (CFD) models. This article provides a comprehensive overview of critical aspects of bearing lubrication, with a specific emphasis on recent advances in CFD models. Lubricant flow and distribution patterns are discussed while examining their impact on drag and churning losses. An extensive discussion is provided on the meshing strategies and modeling approaches used to simulate various flow phenomena within bearings. In addition, relevant trends and impacts of cage design on bearing lubrication and fluid friction have been explored, along with a discussion of prevailing limitations that can be addressed in future bearing CFD models.

References

1.
S K F Group
,
2014
, “Bearing Damage and Failure Analysis,” PUB BU I, 3, p.
14219
.
2.
Vencl
,
A.
,
Gašić
,
V.
, and
Stojanović
,
B.
,
2017
, “
Fault Tree Analysis of Most Common Rolling Bearing Tribological Failures
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
174
, p.
012048
.
3.
Hannon
,
W. M.
, and
Ai
,
X.
,
2013
, “Rolling Bearing Lubricants,”
Encyclopedia of Tribology
, Q. J. Wang and Y. W. Chung, eds.,
Springer
,
Boston, MA
, pp.
2848
2856
.
4.
Liu
,
H.
,
Jurkschat
,
T.
,
Lohner
,
T.
, and
Stahl
,
K.
,
2017
, “
Determination of Oil Distribution and Churning Power Loss of Gearboxes by Finite Volume CFD Method
,”
Tribol. Int.
,
109
, pp.
346
354
.
5.
Toth
,
M.
,
Gangl
,
D.
,
Bansal
,
H.
, and
Leighton
,
M.
,
2022
, “
Thermal Simulation of High-Speed EV Transmission Bearings for Minimum Lubricant Volume
.”
SAE Technical Paper 2022-01-1120
.
6.
Farfan-Cabrera
,
L. I.
,
2019
, “
Tribology of Electric Vehicles: A Review of Critical Components, Current State and Future Improvement Trends
,”
Tribol. Int.
,
138
, pp.
473
486
.
7.
Hamrock
,
B. J.
,
Schmid
,
S. R.
, and
Jacobson
,
B. O.
,
2004
,
Fundamentals of Fluid Film Lubrication
,
Marcel Dekker
,
New York
.
8.
Peterson
,
W.
,
Singh
,
K.
, and
Sadeghi
,
F.
,
2022
, “
Fluid–Solid Interaction Modeling of Elastohydrodynamic Lubrication Point Contacts
,”
ASME J. Tribol.
,
144
(
11
), p.
111601
.
9.
Singh
,
K.
,
Sadeghi
,
F.
,
Russell
,
T.
,
Lorenz
,
S. J.
,
Peterson
,
W.
,
Villarreal
,
J.
, and
Jinmon
,
T.
,
2021
, “
Fluid–Structure Interaction Modeling of Elastohydrodynamically Lubricated Line Contacts
,”
ASME J. Tribol.
,
143
(
9
), p.
091602
.
10.
Bair
,
S.
, and
Habchi
,
W.
,
2024
, “
Quantitative EHL—Seventeen Years In
,”
ASME J. Tribol.
, 146(8), p. 080801.
11.
Sadeghi
,
F.
, and
Sui
,
P. C.
,
1990
, “
Thermal Elastohydrodynamic Lubrication of Rolling/Sliding Contacts
,”
ASME J. Tribol.
,
112
(
2
), pp.
189
195
.
12.
Cheng
,
H. S.
, and
Sternlicht
,
B.
,
1965
, “
A Numerical Solution for the Pressure, Temperature, and Film Thickness Between Two Infinitely Long, Lubricated Rolling and Sliding Cylinders, Under Heavy Loads
,”
ASME J. Basic Eng.
,
87
(
3
), pp.
695
704
.
13.
Cheng
,
H. S.
,
1965
, “
A Refined Solution to the Thermal-Elastohydrodynamic Lubrication of Rolling and Sliding Cylinders
,”
ASLE Trans.
,
8
(
4
), pp.
397
410
.
14.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1992
, “
Three-Dimensional Temperature Distribution in EHD Lubrication: Part I—Circular Contact
,”
ASME J. Tribol.
,
114
(
1
), pp.
32
41
.
15.
Kim
,
K.-H.
, and
Sadeghi
,
F.
,
1993
, “
Three-Dimensional Temperature Distribution in EHD Lubrication: Part II—Point Contact and Numerical Formulation
,”
ASME J. Tribol.
,
115
(
1
), pp.
36
45
.
16.
Roelands
,
C. J. A.
,
Vlugter
,
J. C.
, and
Waterman
,
H. I.
,
1963
, “
The Viscosity-Temperature-Pressure Relationship of Lubricating Oils and its Correlation With Chemical Constitution
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
601
607
.
17.
Kauzmann
,
W.
, and
Eyring
,
H.
,
1940
, “
The Viscous Flow of Large Molecules
,”
J. Am. Chem. Soc.
,
62
(
11
), pp.
3113
3125
.
18.
Conry
,
T. F.
,
Wang
,
S.
, and
Cusano
,
C.
,
1987
, “
A Reynolds-Eyring Equation for Elastohydrodynamic Lubrication in Line Contacts
,”
ASME J. Tribol.
,
109
(
4
), pp.
648
654
.
19.
Sui
,
P. C.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Thermal Elastohydrodynamic Lubrication
,”
ASME J. Tribol.
,
113
(
2
), pp.
390
396
.
20.
Kim
,
K. H.
, and
Sadeghi
,
F.
,
1991
, “
Non-Newtonian Elastohydrodynamic Lubrication of Point Contact
,”
ASME J. Tribol.
,
113
(
4
), pp.
703
711
.
21.
Dowson
,
D.
,
Taylor
,
C. M.
, and
Zhu
,
G.
,
1992
, “
A Transient Elastohydrodynamic Lubrication Analysis of a Cam and Follower
,”
J. Phys. D: Appl. Phys.
,
25
(
1A
), pp.
A313
A320
.
22.
Glovnea
,
R. P.
, and
Spikes
,
H. A.
,
2001
, “
Elastohydrodynamic Film Collapse During Rapid Deceleration. Part II—Theoretical Analysis and Comparison of Theory and Experiment
,”
ASME J. Tribol.
,
123
(
2
), pp.
262
267
.
23.
Osborn
,
K. F.
, and
Sadeghi
,
F.
,
1992
, “
Time Dependent Line EHD Lubrication Using the Multigrid/Multilevel Technique
,”
ASME J. Tribol.
,
114
(
1
), pp.
68
74
.
24.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part I—Mixed Contact Model With Pressure and Film Thickness Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
67
74
.
25.
Zhao
,
J.
,
Sadeghi
,
F.
, and
Hoeprich
,
M. H.
,
2001
, “
Analysis of EHL Circular Contact Start Up: Part II—Surface Temperature Rise Model and Results
,”
ASME J. Tribol.
,
123
(
1
), pp.
75
82
.
26.
Ai
,
X.
, and
Cheng
,
H. S.
,
1994
, “
A Transient EHL Analysis for Line Contacts With Measured Surface Roughness Using Multigrid Technique
,”
ASME J. Tribol.
,
116
(
3
), pp.
549
556
.
27.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part 1—Theoretical Formulation
,”
ASME J. Lubr. Technol.
,
98
(
2
), pp.
223
228
.
28.
Hamrock
,
B. J.
, and
Dowson
,
D.
,
1976
, “
Isothermal Elastohydrodynamic Lubrication of Point Contacts: Part II—Ellipticity Parameter Results
,”
ASME J. Lubr. Tech.
,
98
(
3
), pp.
375
381
.
29.
Morales-Espejel
,
G. E.
,
2014
, “
Surface Roughness Effects in Elastohydrodynamic Lubrication: A Review With Contributions
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
228
(
11
), pp.
1217
1242
.
30.
Xu
,
G.
, and
Sadeghi
,
F.
,
1996
, “
Thermal EHL Analysis of Circular Contacts With Measured Surface Roughness
,”
ASME J. Tribol.
,
118
(
3
), pp.
473
482
.
31.
Sadeghi
,
F.
, and
Sui
,
P. C.
,
1989
, “
Compressible Elastohydrodynamic Lubrication of Rough Surfaces
,”
ASME J. Tribol.
,
111
(
1
), pp.
56
62
.
32.
Jiang
,
X.
,
Hua
,
D. Y.
,
Cheng
,
H. S.
,
Ai
,
X.
, and
Lee
,
S. C.
,
1999
, “
A Mixed Elastohydrodynamic Lubrication Model With Asperity Contact
,”
ASME J. Tribol.
,
121
(
3
), pp.
481
491
.
33.
Venner
,
C. H.
, and
Lubrecht
,
A. A.
,
1994
, “
Numerical Simulation of a Transverse Ridge in a Circular EHL Contact Under Rolling/Sliding
,”
ASME J. Tribol.
,
116
(
4
), pp.
751
761
.
34.
Ai
,
X.
, and
Cheng
,
H. S.
,
1994
, “
The Influence of Moving Dent on Point EHL Contacts
,”
Tribol. Trans.
,
37
(
2
), pp.
323
335
.
35.
Sadeghi
,
F.
, and
Kim
,
K.-H.
,
1994
, “
Effects of a Single Bump or Dent in Time Dependent Thermal Line EHD Lubrication
,”
ASME J. Tribol.
,
116
(
1
), pp.
9
20
.
36.
Hajishafiee
,
A.
,
Kadiric
,
A.
,
Ioannides
,
S.
, and
Dini
,
D.
,
2017
, “
A Coupled Finite-Volume CFD Solver for Two-Dimensional Elasto-Hydrodynamic Lubrication Problems With Particular Application to Rolling Element Bearings
,”
Tribol. Int.
,
109
, pp.
258
273
.
37.
Bruyere
,
V.
,
Fillot
,
N.
,
Morales-Espejel
,
G. E.
, and
Vergne
,
P.
,
2012
, “
Computational Fluid Dynamics and Full Elasticity Model for Sliding Line Thermal Elastohydrodynamic Contacts
,”
Tribol. Int.
,
46
(
1
), pp.
3
13
.
38.
Singh
,
K.
,
Sadeghi
,
F.
,
Peterson
,
W.
,
Lorenz
,
S. J.
,
Villarreal
,
J.
, and
Jinmon
,
T.
,
2022
, “
A CFD-FEM Based Partitioned Fluid Structure Interaction Model to Investigate Surface Cracks in Elastohydrodynamic Lubricated Line Contacts
,”
Tribol. Int.
,
171
, p.
107532
.
39.
Peterson
,
W.
,
Russell
,
T.
,
Sadeghi
,
F.
,
Berhan
,
M. T.
,
Stacke
,
L.-E.
, and
Ståhl
,
J.
,
2021
, “
A CFD Investigation of Lubricant Flow in Deep Groove Ball Bearings
,”
Tribol. Int.
,
154
, p.
106735
.
40.
Peterson
,
W.
,
Russell
,
T.
,
Sadeghi
,
F.
, and
Berhan
,
M. T.
,
2021
, “
Experimental and Analytical Investigation of Fluid Drag Losses in Rolling Element Bearings
,”
Tribol. Int.
,
161
, p.
107106
.
41.
Wang
,
K.
,
Wu
,
J.
, and
Zhao
,
G.
,
2017
, “
Numerical Analysis of Sliding Bearing Dynamic Characteristics Based on CFD
,”
J. Phys.: Conf. Ser.
,
916
(1), p.
012025
.
42.
Arya
,
U.
,
Peterson
,
W.
,
Sadeghi
,
F.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2023
, “
Investigation of Oil Flow in a Ball Bearing Using Bubble Image Velocimetry and CFD Modeling
,”
Tribol. Int.
,
177
, p.
107968
.
43.
Marchesse
,
Y.
,
Changenet
,
C.
, and
Ville
,
F.
,
2014
, “
Numerical Investigations on Drag Coefficient of Balls in Rolling Element Bearing
,”
Tribol. Trans.
,
57
(
5
), pp.
778
785
.
44.
Marchesse
,
Y.
,
Changenet
,
C.
, and
Ville
,
F.
,
2019
, “
Drag Power Loss Investigation in Cylindrical Roller Bearings Using CFD Approach
,”
Tribol. Trans.
,
62
(
3
), pp.
403
411
.
45.
Gao
,
W.
,
Nelias
,
D.
,
Boisson
,
N.
, and
Lyu
,
Y.
,
2018
, “
Model Formulation of Churning Losses in Cylindrical Roller Bearings Based on Numerical Simulation
,”
Tribol. Int.
,
121
, pp.
420
434
.
46.
Schaeffler Technologies
,
2013
,
Lubrication of Rolling Bearings
,
Germany
.
47.
SKF
,
2018
,
Rolling Bearings Catalogue
,
Germany
.
48.
Aamer
,
S.
,
Sadeghi
,
F.
,
Russell
,
T.
,
Peterson
,
W.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2022
, “
Lubrication, Flow Visualization, and Multiphase CFD Modeling of Ball Bearing Cage
,”
Tribol. Trans.
,
65
(
6
), pp.
1088
1098
.
49.
Aamer
,
S.
,
Sadeghi
,
F.
, and
Meinel
,
A.
,
2023
, “
Cylindrical Roller Bearing Cage Pocket Lubrication
,”
Tribol. Int.
,
188
, p.
108851
.
50.
Arya
,
U.
,
Sadeghi
,
F.
,
Aamer
,
S.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2023
, “
In Situ Visualization and Analysis of Oil Starvation in Ball Bearing Cages
,”
Tribol. Trans.
,
66
(
5
), pp.
965
978
.
51.
Chen
,
H.
,
Wang
,
W.
,
Liang
,
H.
, and
Ge
,
X.
,
2022
, “
Observation of the Oil Flow in a Ball Bearing With a Novel Experiment Method and Simulation
,”
Tribol. Int.
,
174
, p.
107731
.
52.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.
53.
Sussman
,
M.
, and
Puckett
,
E. G.
,
2000
, “
A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows
,”
J. Comput. Phys.
,
162
(
2
), pp.
301
337
.
54.
Adeniyi
,
A. A.
,
Morvan
,
H. P.
, and
Simmons
,
K. A.
,
2015
, “
A Multiphase Computational Study of Oil-Air Flow Within the Bearing Sector of Aeroengines
,”
Proceedings of the ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. Volume 5C: Heat Transfer
, Montreal, Quebec, Canada, June 15–19.
55.
Maccioni
,
L.
, and
Concli
,
F.
,
2020
, “
Computational Fluid Dynamics Applied to Lubricated Mechanical Components: Review of the Approaches to Simulate Gears, Bearings, and Pumps
,”
Appl. Sci.
,
10
(
24
), p.
8810
.
56.
Koshizuka
,
S.
, and
Oka
,
Y.
,
1996
, “
Moving-Particle Semi-Implicit Method for Fragmentation of Incompressible Fluid
,”
Nucl. Sci. Eng.
,
123
(
3
), pp.
421
434
.
57.
Shao
,
S.
,
Zhang
,
K.
,
Yao
,
Y.
,
Liu
,
Y.
, and
Gu
,
J.
,
2022
, “
Investigations on Lubrication Characteristics of High-Speed Electric Multiple Unit Gearbox by Oil Volume Adjusting Device
,”
J. Zhejiang Univ. Sci. A
,
23
(
12
), pp.
1013
1026
.
58.
Deng
,
X.
,
Wang
,
S.
,
Wang
,
S.
,
Wang
,
J.
,
Liu
,
Y.
,
Dou
,
Y.
,
He
,
G.
, and
Qian
,
L.
,
2020
, “
Lubrication Mechanism in Gearbox of High-Speed Railway Trains
,”
J. Adv. Mech. Des. Syst. Manuf.
,
14
(
4
), p.
JAMDSM0054
.
59.
Wu
,
W.
,
Wei
,
C.
, and
Yuan
,
S.
,
2022
, “
Numerical Simulation of Ball Bearing Flow Field Using the Moving Particle Semi-Implicit Method
,”
Eng. Appl. Comput. Fluid Mech.
,
16
(
1
), pp.
215
228
.
60.
Wei
,
C.
,
Wu
,
W.
,
Hou
,
X.
, and
Yuan
,
S.
,
2022
, “
Study on Oil Distribution and Oil Content of Oil Bath Lubrication Bearings Based on MPS Method
,”
Tribol. Trans.
,
65
(
5
), pp.
942
951
.
61.
Xu
,
R. S.
,
Wang
,
J. J.
,
Xu
,
W.
, and
Liu
,
L. B.
,
2011
, “
Numerical DPM Model for Two-Phase Flow in Aero-Engine Bearing Chamber
,”
Adv. Mater. Res.
,
201–203
, pp.
2267
2270
.
62.
Dick
,
J.-S.
,
Kumar
,
V.
,
Nakod
,
P.
, and
Montanari
,
F.
,
2019
, “
Simulation of an Aero-Engine Bearing Compartment Using Two-Way Transition Between Lagrangian Droplets and a Three-Dimensional Eulerian Liquid Film
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition
. Volume 2C: Turbomachinery, Phoenix, AZ. June 17–21.
American Society of Mechanical Engineers
.
63.
ANSYS, I.
,
2013
,
ANSYS Fluent Theory Guide (15.0)
,
Canonsburg, PA
.
64.
Russell
,
T.
, and
Sadeghi
,
F.
,
2022
, “
The Effects of Lubricant Starvation on Ball Bearing Cage Pocket Friction
,”
Tribol. Int.
,
173
, p.
107630
.
65.
Russell
,
T.
,
Sadeghi
,
F.
,
Peterson
,
W.
,
Aamer
,
S.
, and
Arya
,
U.
,
2021
, “
A Novel Test Rig for the Investigation of Ball Bearing Cage Friction
,”
Tribol. Trans.
,
64
(
5
), pp.
943
955
.
66.
Russell
,
T.
,
Sadeghi
,
F.
,
Kang
,
Y. S.
, and
Mazzitelli
,
I.
,
2024
, “
The Influence of Cage Pocket Lubrication on the Simulation of Deep Groove Ball Bearing Cage Motion
,”
ASME J. Tribol.
,
146
(
2
), p.
022201
.
67.
Peterson
,
W.
,
Sadeghi
,
F.
,
Meinel
,
A.
, and
Grillenberger
,
H.
,
2023
, “
Investigation of Roller Bearing Cage Pocket Lubrication and Friction
,”
ASME J. Tribol.
,
145
(
5
), p.
054302
.
68.
Wu
,
W.
,
Hu
,
C.
,
Hu
,
J.
,
Yuan
,
S.
, and
Zhang
,
R.
,
2017
, “
Jet Cooling Characteristics for Ball Bearings Using the VOF Multiphase Model
,”
Int. J. Therm. Sci.
,
116
, pp.
150
158
.
69.
Li
,
M.
,
Lu
,
F.
,
Bai
,
X.
,
Zhu
,
W.
, and
Zhu
,
R.
,
2022
, “
Heat-Flow Coupling Variation in Double-Row Tapered-Roller Bearings During the Loss of Lubrication Process
,”
Proc. Inst. Mech. Eng. C: J. Mech. Eng. Sci.
,
236
(
13
), pp.
7500
7510
.
70.
Wei
,
C.
,
Wu
,
W.
,
Wang
,
Y.
,
Nelias
,
D.
, and
Yuan
,
S.
,
2024
, “
Analysis of Enhanced Heat Transfer Performance of the Functional Cage
,”
Int. J. Heat Mass Transf.
,
219
, p.
124860
.
71.
Widner
,
R. L.
, and
Littmann
,
W. E.
,
1976
, “Bearing Damage Analysis,”
National Bureau of Standard Special Publication
, Vol.
423
, Proceedings of the 20th Meeting of the Mechanical Failures Prevention Group, Gaithersburg, MD, May 8–10, 1974, p.
1
.
72.
Peterson
,
W. L.
,
2023
, “
Investigation of Rolling Element Bearing Lubrication and Friction
,”
Doctor of Philosophy
,
Purdue University
.
73.
Feldermann
,
A.
,
Fischer
,
D.
,
Neumann
,
S.
, and
Jacobs
,
G.
,
2017
, “
Determination of Hydraulic Losses in Radial Cylindrical Roller Bearings Using CFD Simulations
,”
Tribol. Int.
,
113
, pp.
245
251
.
74.
Maccioni
,
L.
,
Rüth
,
L.
,
Koch
,
O.
, and
Concli
,
F.
,
2023
, “
Load-Independent Power Losses of Full-Flooded Lubricated Tapered Roller Bearings: Numerical and Experimental Investigation of the Effect of Operating Temperature and Housing Walls Distances
,”
Tribol. Trans.
, 66(6), pp.
1078
1094
.
75.
Liebrecht
,
J.
,
Si
,
X.
,
Sauer
,
B.
, and
Schwarze
,
H.
,
2015
, “
Investigation of Drag and Churning Losses on Tapered Roller Bearings
,”
Stroj. Vestn./J. Mech. Eng.
,
61
(
6
), pp.
399
408
.
76.
Deng
,
S.
,
Zhao
,
G.
,
Qian
,
D.
,
Jiang
,
S.
, and
Hua
,
L.
,
2022
, “
Investigation of Oil–Air Flow and Temperature for High-Speed Ball Bearings by Combining Nonlinear Dynamic and Computational Fluid Dynamics Models
,”
ASME J. Tribol.
,
144
(
7
), p.
071204
.
77.
Yan
,
K.
,
Wang
,
Y.
,
Zhu
,
Y.
, and
Hong
,
J.
,
2017
, “
Investigation on the Effect of Sealing Condition on the Internal Flow Pattern of High-Speed Ball Bearing
,”
Tribol. Int.
,
105
, pp.
85
93
.
78.
Zeng
,
Q.
,
Zhang
,
J.
,
Hong
,
J.
, and
Liu
,
C.
,
2016
, “
A Comparative Study on Simulation and Experiment of Oil-Air Lubrication Unit for High Speed Bearing
,”
Ind. Lubr. Tribol.
,
68
(
3
), pp.
325
335
.
79.
Concli
,
F.
,
Schaefer
,
C. T.
, and
Bohnert
,
C.
,
2020
, “
Innovative Meshing Strategies for Bearing Lubrication Simulations
,”
Lubricants
,
8
(
4
), p.
46
.
80.
Tóth
,
S. G.
,
2023
, “
CFD Analyses of the Pressure Distribution in Hydrostatic Journal Bearings With Different Recess Shapes
,” Lecture Notes in Mechanical Engineering (LNME), pp.
592
603
.
81.
Zhang
,
H.
,
Tang
,
S.
,
Yue
,
H.
,
Wu
,
K.
,
Zhu
,
Y.
,
Liu
,
C.
,
Liang
,
B.
, and
Li
,
C.
,
2020
, “
Comparison of Computational Fluid Dynamic Simulation of a Stirred Tank With Polyhedral and Tetrahedral Meshes
,”
Iran. J. Chem. Chem. Eng.
,
39
(
4
), pp.
311
319
.
82.
Balafas
,
G.
,
2014
, “
Polyhedral Mesh Generation for CFD-Analysis of Complex Structures
,”
Diplomityö
,
Münchenin teknillinen yliopisto
, Master's thesis, Technische Universität München, München.
83.
Liu
,
J.
,
Ni
,
H.
,
Zhou
,
R.
,
Li
,
X.
,
Xing
,
Q.
, and
Pan
,
G.
,
2023
, “
A Simulation Analysis of Ball Bearing Lubrication Characteristics Considering the Cage Clearance
,”
ASME J. Tribol.
,
145
(
4
), p. 044301
84.
Mastrone
,
M. N.
,
Hartono
,
E. A.
,
Chernoray
,
V.
, and
Concli
,
F.
,
2020
, “
Oil Distribution and Churning Losses of Gearboxes: Experimental and Numerical Analysis
,”
Tribol. Int.
,
151
, pp.
106496
.
85.
Saksono
,
P. H.
,
Dettmer
,
W. G.
, and
Perić
,
D.
,
2007
, “
An Adaptive Remeshing Strategy for Flows With Moving Boundaries and Fluid–Structure Interaction
,”
Int. J. Numer. Methods Eng.
,
71
(
9
), pp.
1009
1050
.
86.
Ting
,
D. S.-K.
,
2016
,
Basics of Engineering Turbulence
,
Elsevier
,
New York
.
87.
Yan
,
K.
,
Dong
,
L.
,
Zheng
,
J.
,
Li
,
B.
,
Wang
,
D.
, and
Sun
,
Y.
,
2018
, “
Flow Performance Analysis of Different Air Supply Methods for High Speed and Low Friction Ball Bearing
,”
Tribol. Int.
,
121
, pp.
94
107
.
88.
Tung
,
S. C.
, and
McMillan
,
M. L.
,
2004
, “
Automotive Tribology Overview of Current Advances and Challenges for the Future
,”
Tribol. Int.
,
37
(
7
), pp.
517
536
.
89.
Holmberg
,
K.
, and
Erdemir
,
A.
,
2019
, “
The Impact of Tribology on Energy Use and CO2 Emission Globally and in Combustion Engine and Electric Cars
,”
Tribol. Int.
,
135
, pp.
389
396
.
90.
Van Rensselar
,
J.
,
2019
, “
The Tribology of Electric Vehicles
,”
Tribol. Lubr. Technol.
,
75
(
1
), pp.
34
36
. 38–43. https://www.proquest.com/scholarly-journals/tribology-electric-vehicles/docview/2171603614/se-2?accountid=13360
91.
Zhang
,
W.
,
Paik
,
B. G.
,
Jang
,
Y. G.
,
Lee
,
S. J.
,
Lee
,
S. E.
, and
Kim
,
J. H.
,
2007
, “
Particle Image Velocimetry Measurements of the Three-Dimensional Flow in an Exhaust Hood Model of a Low-Pressure Steam Turbine
,”
ASME J. Eng. Gas Turbine Power
,
129
(
2
), pp.
411
419
.
92.
Adrian
,
R. J.
,
2005
, “
Twenty Years of Particle Image Velocimetry
,”
Exp. Fluids
,
39
(
2
), pp.
159
169
.
93.
Raffel
,
M.
,
Willert
,
C. E.
,
Wereley
,
S. T.
, and
Kompenhans
,
J.
,
2007
,
Particle Image Velocimetry
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
.
94.
Richardson
,
D.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, and
Rowan
,
S.
,
2019
, “
Using MPIV to Investigate Fluid Flow in a Pocketed Thrust Bearing
,”
Tribol. Trans.
,
62
(
3
), pp.
350
361
.
95.
Wang
,
C.-P.
,
Sadeghi
,
F.
,
Wereley
,
S. T.
, and
Chuang
,
H.-S.
,
2009
, “
Investigation of Fluid Flow out of a Microcavity Using µ PIV
,”
Tribol. Trans.
,
52
(
6
), pp.
817
832
.
96.
Maccioni
,
L.
,
Chernoray
,
V. G.
,
Bohnert
,
C.
, and
Concli
,
F.
,
2022
, “
Particle Image Velocimetry Measurements Inside a Tapered Roller Bearing With an Outer Ring Made of Sapphire: Design and Operation of an Innovative Test Rig
,”
Tribol. Int.
,
165
, p.
107313
.
97.
Maccioni
,
L.
,
Chernoray
,
V. G.
, and
Concli
,
F.
,
2023
, “
Fluxes in a Full-Flooded Lubricated Tapered Roller Bearing: Particle Image Velocimetry Measurements and Computational Fluid Dynamics Simulations
,”
Tribol. Int.
,
188
, p.
108824
.
98.
Gertzos
,
K. P.
,
Nikolakopoulos
,
P. G.
, and
Papadopoulos
,
C. A.
,
2008
, “
CFD Analysis of Journal Bearing Hydrodynamic Lubrication by Bingham Lubricant
,”
Tribol. Int.
,
41
(
12
), pp.
1190
1204
.
99.
Deligant
,
M.
,
Podevin
,
P.
, and
Descombes
,
G.
,
2011
, “
CFD Model for Turbocharger Journal Bearing Performances
,”
Appl. Therm. Eng.
,
31
(
5
), pp.
811
819
.
100.
Cupillard
,
S.
,
Glavatskih
,
S.
, and
Cervantes
,
M. J.
,
2008
, “
Computational Fluid Dynamics Analysis of a Journal Bearing With Surface Texturing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
222
(
2
), pp.
97
107
.
101.
Eleshaky
,
M. E.
,
2009
, “
CFD Investigation of Pressure Depressions in Aerostatic Circular Thrust Bearings
,”
Tribol. Int.
,
42
(
7
), pp.
1108
1117
.
102.
Gao
,
W.
,
Nelias
,
D.
,
Lyu
,
Y.
, and
Boisson
,
N.
,
2018
, “
Numerical Investigations on Drag Coefficient of Circular Cylinder With Two Free Ends in Roller Bearings
,”
Tribol. Int.
,
123
, pp.
43
49
.
103.
Wei
,
C.
,
Wu
,
W.
,
Hou
,
X.
,
Nelias
,
D.
, and
Yuan
,
S.
,
2023
, “
Research on Mechanism of Enhancing Lubrication Flow Field Regulation of High-Speed Bearing Functional Cage
,”
Tribol. Int.
,
188
, pp.
108780
.
104.
Aidarinis
,
J.
,
Missirlis
,
D.
,
Yakinthos
,
K.
, and
Goulas
,
A.
,
2011
, “
CFD Modeling and LDA Measurements for the Air-Flow in an Aero Engine Front Bearing Chamber
,”
ASME J. Eng. Gas Turbine Power
,
133
(
8
), p.
082504
.
105.
Yan
,
K.
,
Zhang
,
J.
,
Hong
,
J.
,
Wang
,
Y.
, and
Zhu
,
Y.
,
2016
, “
Structural Optimization of Lubrication Device for High Speed Angular Contact Ball Bearing Based on Internal Fluid Flow Analysis
,”
Int. J. Heat Mass Transf.
,
95
, pp.
540
550
.
106.
Lee
,
C. W.
,
Palma
,
P. C.
,
Simmons
,
K.
, and
Pickering
,
S. J.
,
2005
, “
Comparison of Computational Fluid Dynamics and Particle Image Velocimetry Data for the Airflow in an Aeroengine Bearing Chamber
,”
ASME J. Eng. Gas. Turbine Power
,
127
(
4
), pp.
697
703
.
107.
Chiu
,
Y. P.
, and
Myers
,
M.
,
1998
, “
A Rational Approach for Determining Permissible Speed for Needle Roller Bearings
,”
SAE Transactions
, 107, pp.
330
337
. http://www.jstor.org/stable/44668171
108.
Aihara
,
S.
,
1987
, “
A New Running Torque Formula for Tapered Roller Bearings Under Axial Load
,”
ASME J. Tribol.
,
109
(
3
), pp.
471
477
.
109.
Trippett
,
R. J.
,
1985
, “
Ball and Needle Bearing Friction Correlations Under Radial Load Conditions
,”
SAE Trans.
,
94
, pp.
646
653
.
110.
Palmgren
,
A.
,
1959
,
Ball and Roller Bearing Engineering
,
SKF Industries Inc
,
Philadelphia
.
111.
Iqbal
,
S.
,
Al-Bender
,
F.
,
Croes
,
J.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2013
, “
Frictional Power Loss in Solid-Grease-Lubricated Needle Roller Bearing
,”
Lubr. Sci.
,
25
(
5
), pp.
351
367
.
112.
Schaeffler Technologies GmbH & Co. KG
,
2011
, “
Bearinx-Online Easy Friction
.”
113.
SKF, B.
,
2014
,
The SKF Model for Calculating the Frictional Moment
,
SKF
.
114.
Hammami
,
M.
,
Martins
,
R.
,
Fernandes
,
C.
,
Seabra
,
J.
,
Abbes
,
M. S.
, and
Haddar
,
M.
,
2018
, “
Friction Torque in Rolling Bearings Lubricated With Axle Gear Oils
,”
Tribol. Int.
,
119
, pp.
419
435
.
115.
Morales-Espejel
,
G. E.
, and
Wemekamp
,
A. W.
,
2023
, “
An Engineering Drag Losses Model for Rolling Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
237
(
2
), pp.
415
430
.
116.
Dindar
,
A.
,
Chimanpure
,
A. S.
, and
Kahraman
,
A.
,
2022
, “
Mechanical Power Losses of Ball Bearings: Model and Experimental Validation
,”
ASME J. Tribol.
,
144
(
5
), p.
051603
.
117.
Dindar
,
A.
,
Hong
,
I.
,
Garg
,
A.
, and
Kahraman
,
A.
,
2022
, “
A Methodology to Measure Power Losses of Rolling Element Bearings Under Combined Radial and Axial Loading Conditions
,”
Tribol. Trans.
,
65
(
1
), pp.
137
152
.
118.
Darul
,
L.
,
Touret
,
T.
,
Changenet
,
C.
, and
Ville
,
F.
,
2024
, “
Power Loss Analysis of an Oil-Jet Lubricated Angular Contact Ball Bearing: Theoretical and Experimental Investigations
,”
Lubricants
,
12
(
1
), pp.
14
.
119.
Zhou
,
R. S.
, and
Hoeprich
,
M. R.
,
1991
, “
Torque of Tapered Roller Bearings
,”
ASME J. Tribol.
,
113
(
3
), p.
590
597
.
120.
Pouly
,
F.
,
Changenet
,
C.
,
Ville
,
F.
,
Velex
,
P.
, and
Damiens
,
B.
,
2010
, “
Investigations on the Power Losses and Thermal Behaviour of Rolling Element Bearings
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
224
(
9
), pp.
925
933
.
121.
Darul
,
L.
,
Touret
,
T.
,
Changenet
,
C.
, and
Ville
,
F.
,
2023
, “
Power Losses of Oil-Jet Lubricated Ball Bearings With Limited Applied Load: Part 1—Theoretical Analysis
,”
Tribol. Trans.
,
66
(
5)
, pp.
1
8
.
122.
de Cadier de Veauce
,
F.
,
Darul
,
L.
,
Marchesse
,
Y.
,
Touret
,
T.
,
Changenet
,
C.
,
Ville
,
F.
,
Amar
,
L.
, and
Fossier
,
C.
,
2023
, “
Power Losses of Oil-Jet Lubricated Ball Bearings With Limited Applied Load: Part 2—Experiments and Model Validation
,”
Tribol. Trans.
,
66
(
5),
pp.
1
10
.
123.
ISO, B. S.
,
2001
,
TR 14179-1. Gears–Thermal Capacity
,
British Standards Institution
,
London, UK
.
124.
Harris
,
T. A.
, and
Crecelius
,
W. J.
,
1986
, “
Rolling Bearing Analysis
,”
ASME J. Tribol.
,
108
(
1
), pp.
149
150
.
125.
Nelias
,
D.
,
Sainsot
,
P.
, and
Flamand
,
L.
,
1994
, “
Power Loss of Gearbox Ball Bearing Under Axial and Radial Loads©
,”
Tribol. Trans.
,
37
(
1
), pp.
83
90
.
126.
Chiu
,
Y. P.
,
2008
, “
An Analysis and Prediction of Lubricant Film Starvation in Rolling Contact Systems
,”
Tribol. Trans.
,
17
(
1
), pp.
22
35
.
127.
Tian
,
J.
,
Zhang
,
C.
,
Wang
,
Z.
,
Liang
,
H.
, and
Guo
,
D.
,
2022
, “
Simulation Sudden Oil Supply in Starved High-Speed Angular Contact Ball Bearing
,”
Tribol. Int.
,
175
, pp.
107784
.
128.
Olaru
,
D. N.
, and
Gafitanu
,
M. D.
,
1997
, “
Lubrication Safety in High-Speed Ball-Bearings
,”
Lubr. Sci.
,
9
(
4
), pp.
365
389
.
129.
Jacobs
,
W.
,
Boonen
,
R.
,
Sas
,
P.
, and
Moens
,
D.
,
2014
, “
The Influence of the Lubricant Film on the Stiffness and Damping Characteristics of a Deep Groove Ball Bearing
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
335
350
.
130.
Cohen
,
M. R.
, and
McC. Ettles
,
C. M.
,
1987
, “
Measurement and Correlation of the Striations in a Liquid Film During Sudden Separation
,”
ASLE Trans.
,
30
(
1
), pp.
84
90
.
131.
Dowson
,
D.
, and
Taylor
,
C. M.
,
1979
, “
Cavitation in Bearings
,”
Annu. Rev. Fluid Mech.
,
11
(
1
), pp.
35
65
.
132.
Jacobson
,
B. O.
, and
Hamrock
,
B. J.
,
1983
, “
High-Speed Motion Picture Camera Experiments of Cavitation in Dynamically Loaded Journal Bearings
,”
J. Lubr. Technol.
,
105
(
3
), pp.
446
452
.
133.
Cole
,
J. A.
, and
Hughes
,
C. J.
,
1956
, “
Oil Flow and Film Extent in Complete Journal Bearings
,”
Proc. Inst. Mech. Eng.
,
170
(
1
), pp.
499
510
.
134.
Makenham
,
P. M.
,
1968
, “
Investigation of Cavitation in a Reversed Parallel Stepped Slider Bearing
,”
Master of Science Project (Tribology)
,
University of Leeds
.
135.
Mokhtar
,
M. O. A.
, and
Ameen
,
M. E.
,
1983
, “
An Experimental Study of Cavitation in Hydrodynamically Lubricated Journal Bearings—Part I: Oil Film Behaviour
,”
SAE Technical Papers
, SAE International.
136.
Heshmat
,
H.
, and
Pinkus
,
O.
,
1985
, “
Performance of Starved Journal Bearings With Oil Ring Lubrication
,”
ASME J. Tribol.
,
107
(
1
), pp.
23
31
.
137.
Cann
,
P. M.
,
2008
, “
Starvation and Reflow in a Grease-Lubricated Elastohydrodynamic Contact
,”
Tribol. Trans.
,
39
(
3
), pp.
698
704
.
138.
Wedeven
,
L. D.
,
Evans
,
D.
, and
Cameron
,
A.
,
1971
, “
Optical Analysis of Ball Bearing Starvation
,”
ASME J. Lubr. Technol.
,
93
(
3
), pp.
349
361
.
139.
Chen
,
H.
,
Wang
,
W.
,
Liang
,
H.
, and
Zhao
,
Z.
,
2021
, “
Patterns of Interfacial Flow Around a Lubricated Rolling Point Contact Region
,”
Phys. Fluids
,
33
(
10
), pp.
102118
.
140.
Hui
,
T.
,
Sadeghi
,
F.
,
Rateick
,
R. G.
, and
Frank
,
M. C.
,
2007
, “
Performance Characteristics of Jet Fuel in Heavily Loaded Contacts
,”
Tribol. Trans.
,
50
(
2
), pp.
154
164
.
141.
Cen
,
H.
,
Lugt
,
P. M.
, and
Morales-Espejel
,
G.
,
2014
, “
On the Film Thickness of Grease-Lubricated Contacts at Low Speeds
,”
Tribol. Trans.
,
57
(
4
), pp.
668
678
.
142.
Cen
,
H.
, and
Lugt
,
P. M.
,
2019
, “
Film Thickness in a Grease Lubricated Ball Bearing
,”
Tribol. Int.
,
134
, pp.
26
35
.
143.
Damiens
,
B.
,
Lubrecht
,
A. A.
, and
Cann
,
P. M.
,
2004
, “
Influence of Cage Clearance on Bearing Lubrication©
,”
Tribol. Trans.
,
47
(
1
), pp.
2
6
.
144.
Molina
,
M. A.
, and
Gohar
,
R.
,
1978
, “
Hydrodynamic Lubrication of Ball-Bearing Cage Pockets
,”
J. Mech. Eng. Sci.
,
20
(
1
), pp.
11
20
.
145.
Houpert
,
L.
,
1987
, “
Piezoviscous-Rigid Rolling and Sliding Traction Forces, Application: The Rolling Element–Cage Pocket Contact
,”
ASME J. Tribol.
,
109
(
2
), pp.
363
370
.
146.
Gentle
,
C. R.
, and
Pasdari
,
M.
,
1983
, “
Computer Simulation of Starvation in Thrust-Loaded Ball-Bearings
,”
Wear
,
92
(
1
), pp.
125
134
.
147.
Gentle
,
C. R.
, and
Pasdari
,
M.
,
1985
, “
Measurement of Cage and Pocket Friction in a Ball Bearing for Use in a Simulation Program
,”
ASLE Trans.
,
28
(
4
), pp.
536
541
.
148.
Olaru
,
D. N.
, and
Gafitanu
,
M. D.
,
1997
, “
A New Methodology to Estimate Starvation in Ball Bearings
,”
Tribotest
,
4
(
1
), pp.
93
106
.
149.
Harris
,
T. A.
, and
Kotzalas
,
M. N.
,
2006
,
Advanced Concepts of Bearing Technology
,
CRC Press
, Boca Raton, FL.
150.
Poll
,
G.
,
Li
,
X.
,
Bader
,
N.
, and
Guo
,
F.
,
2019
, “
Starved Lubrication in Rolling Contacts—A Review
,”
Bearing World J.
,
4
, pp.
69
81
.
151.
Wen
,
C.
,
Meng
,
X.
,
Gu
,
J.
,
Xiao
,
L.
,
Jiang
,
S.
, and
Bi
,
H.
,
2023
, “
Starved Lubrication Analysis of Angular Contact Ball Bearing Based on a Multi-Degree-of-Freedom Tribo-Dynamic Model
,”
Friction
,
11
(
8
), pp.
1395
1418
.
152.
Crouchez-Pillot
,
A.
, and
Morvan
,
H. P.
,
2014
, “
CFD Simulation of an Aeroengine Bearing Chamber Using an Enhanced Volume of Fluid (VOF) Method: An Evaluation Using Adaptive Meshing
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5C: Heat Transfer
, Düsseldorf, Germany, June 16–20.
American Society of Mechanical Engineers
.
153.
Chen
,
H.
,
Liang
,
H.
,
Wang
,
W.
, and
Zhang
,
S.
,
2023
, “
Investigation on the Oil Transfer Behaviors and the Air-Oil Interfacial Flow Patterns in a Ball Bearing Under Different Capillary Conditions
,”
Friction
,
11
(
2
), pp.
228
245
.
154.
Fischer
,
D.
,
von Goeldel
,
S.
,
Jacobs
,
G.
, and
Stratmann
,
A.
,
2021
, “
Numerical Investigation of Effects on Replenishment in Rolling Point Contacts Using CFD Simulations
,”
Tribol. Int.
,
157
, pp.
106858
.
155.
Wen
,
Y.
, and
Oshima
,
S.
,
2014
, “
Oil Flow Simulation Based on CFD for Reducing Agitation Torque of Ball Bearings
,”
SAE Int. J. Passenger Cars—Mech. Syst.
,
7
(
4
), pp.
2014-01-2850
.
156.
Peduto
,
D.
,
Hashmi
,
A. A.
,
Dullenkopf
,
K.
,
Bauer
,
H.-J.
, and
Morvan
,
H.
,
2011
, “
Modelling of an Aero-Engine Bearing Chamber Using Enhanced CFD Technique
,”
Proceedings of the ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition. Volume 5: Heat Transfer, Parts A and B
, Vancouver, British Columbia, Canada, June 6–10,
ASMEDC
, pp.
809
819
.
157.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.
158.
Liang
,
H.
,
Zhang
,
Y.
,
Wang
,
W.
, and
Zhang
,
S.
,
2022
, “
An Experimental Study on the Distribution and Migration of Lubricating Oil in Rolling Bearings at Low Speeds
,”
Tribol. Trans.
,
65
(
4
), pp.
677
685
.
159.
Liang
,
H.
,
Zhang
,
Y.
, and
Wang
,
W.
,
2022
, “
Influence of the Cage on the Migration and Distribution of Lubricating Oil Inside a Ball Bearing
,”
Friction
,
10
(
7
), pp.
1035
1045
.
160.
Sedlář
,
M.
, and
Abrahámek
,
P.
,
2023
, “
Numerical Analysis of Oil Lubrication and Cooling of Roller Thrust Bearing in High-Performance Mixed-Flow Pump
,”
Energies
,
16
(
19
), pp.
6890
.
161.
Gao
,
S.
,
Hou
,
X.
,
Ma
,
C.
,
Yang
,
Y.
,
Li
,
Z.
,
Yin
,
R.
, and
Zhu
,
R.
,
2024
, “
Transient Simulation Analysis of Needle Roller Bearing in Oil Jet Lubrication and Planetary Gearbox Lubrication Conditions Based on Computational Fluid Dynamics
,”
Lubricants
,
12
(
2
), p.
39
.
162.
Shan
,
W.
,
Chen
,
Y.
,
Huang
,
J.
,
Wang
,
X.
,
Han
,
Z.
, and
Wu
,
K.
,
2023
, “
A Multiphase Flow Study for Lubrication Characteristics on the Internal Flow Pattern of Ball Bearing
,”
Res. Eng.
,
20
, p.
101429
.
163.
Chen
,
H.
,
Wang
,
W.
,
Zhao
,
Z.
, and
Liang
,
H.
,
2022
, “
Evolution and Flow Maps of the Oil Layer in Successive Rolling Point Contact Systems: Bearing as a Case
,”
Phys. Fluids
,
34
(
3
), p.
032110
.
164.
Jiang
,
L.
,
Lyu
,
Y.
,
Gao
,
W.
,
Zhu
,
P.
, and
Liu
,
Z.
,
2022
, “
Numerical Investigation of the Oil–Air Distribution Inside Ball Bearings With Under-Race Lubrication
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
236
(
3
), pp.
499
513
.
165.
Gao
,
W.
,
Nelias
,
D.
,
Li
,
K.
,
Liu
,
Z.
, and
Lyu
,
Y.
,
2019
, “
A Multiphase Computational Study of Oil Distribution Inside Roller Bearings With Under-Race Lubrication
,”
Tribol. Int.
,
140
, pp.
105862
.
166.
Zhang
,
R.
,
Wei
,
C.
,
Wu
,
W.
, and
Yuan
,
S.
,
2015
, “
CFD Investigation on the Influence of Jet Velocity of Oil-Jet Lubricated Ball Bearing on the Characteristics of Lubrication Flow Field
,”
2015 International Conference on Fluid Power and Mechatronics (FPM)
,
Harbin, China, Aug. 5–7, IEEE
, pp.
1324
1328
.
167.
Nemoto
,
S.
,
Kawata
,
K.
,
Kuribayashi
,
T.
,
Akiyama
,
K.
,
Kawai
,
H.
, and
Murakawa
,
H.
,
1997
, “
A Study of Engine Oil Aeration
,”
JSAE Rev.
,
18
(
3)
, pp.
271
276
.
168.
Qi
,
A.
,
Yinsheng
,
Z.
, and
Yongxin
,
Q.
,
1997
, “
Study on the Viscosity Properties of Bubbly Oil and the Static Characteristics of Journal Bearing Lubricated With Bubbly Oil
,”
Wear
,
213
(
1–2
), pp.
159
164
.
169.
Maccioni
,
L.
,
Chernoray
,
V. G.
,
Mastrone
,
M. N.
,
Bohnert
,
C.
, and
Concli
,
F.
,
2022
, “
Study of the Impact of Aeration on the Lubricant Behavior in a Tapered Roller Bearing: Innovative Numerical Modelling and Validation via Particle Image Velocimetry
,”
Tribol. Int.
,
165
, pp.
107301
.
170.
Chun
,
S. M.
,
2002
, “
A Parametric Study on Bubbly Lubrication of High-Speed Journal Bearings
,”
Tribol. Int.
,
35
(
1
), pp.
1
13
.
171.
Hann
,
D. B.
,
Cherdantsev
,
A. V.
, and
Azzopardi
,
B. J.
,
2018
, “
Study of Bubbles Entrapped Into a Gas-Sheared Liquid Film
,”
Int. J. Multiphase Flow
,
108
, pp.
181
201
.
172.
Nikolajsen
,
J. L.
,
1999
, “
Viscosity and Density Models for Aerated Oil in Fluid-Film Bearings©
,”
Tribol. Trans.
,
42
(
1
), pp.
186
191
.
173.
Jiang
,
S.
,
Li
,
S.
,
Lu
,
L.
, and
Zhang
,
C.
,
2023
, “
Study on Lubricating Performance of the Bubbly Oil Under High Shear Rate—Part 1: Generation Method and Viscosity Measurement of the Bubbly Oil
,”
ASME J. Tribol.
,
145
(
8
), p.
084102
.
174.
Choi
,
S.
, and
Kim
,
K. W.
,
2002
, “
Analysis of Bubbly Lubrication in Journal Bearings
,”
JSME Int. J. Ser. C
,
45
(
3
), pp.
802
808
.
175.
Goodwin
,
M. J.
,
Dong
,
D.
,
Yu
,
H.
, and
Nikolajsen
,
J. L.
,
2007
, “
Theoretical and Experimental Investigation of the Effect of Oil Aeration on the Load-Carrying Capacity of a Hydrodynamic Journal Bearing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
221
(
7
), pp.
779
786
.
176.
Wu
,
W.
,
Hu
,
C.
,
Hu
,
J.
, and
Yuan
,
S.
,
2016
, “
Jet Cooling for Rolling Bearings: Flow Visualization and Temperature Distribution
,”
Appl. Therm. Eng.
,
105
, pp.
217
224
.
177.
Vasques
,
J.
,
Ibrahim
,
A.
,
Hann
,
D.
,
Simmons
,
K.
, and
Walsh
,
M.
,
2019
, “
The Effect of Surface Tension on Bubble Generation in Gas-Sheared Liquid Films
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 5A: Heat Transfer
, Phoenix, AZ. June 17–21,
American Society of Mechanical Engineers
.
178.
Hee
,
J. L.
,
Santhosh
,
R.
,
Simmons
,
K.
,
Johnson
,
G.
,
Hann
,
D.
, and
Walsh
,
M.
,
2017
, “
Oil Film Thickness Measurements on Surfaces Close to an Aero-Engine Ball Bearing Using Optical Techniques
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics
, Charlotte, NC, June 26–30,
American Society of Mechanical Engineers
.
179.
Santhosh
,
R.
,
Hee
,
J. L.
,
Simmons
,
K.
,
Johnson
,
G.
,
Hann
,
D.
, and
Walsh
,
M.
,
2017
, “
Experimental Investigation of Oil Shedding From an Aero-Engine Ball Bearing at Moderate Speeds
,”
Proceedings of the ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition. Volume 7A: Structures and Dynamics
, Charlotte, NC, June 26–30,
American Society of Mechanical Engineers
.
180.
Gorse
,
P.
,
Dullenkopf
,
K.
,
Bauer
,
H. J.
, and
Wittig
,
S.
,
2009
, “
An Experimental Study on Droplet Generation in Bearing Chambers Caused by Roller Bearings
,”
Proc. ASME Turbo Expo
,
4
(
PART B
), pp.
1681
1692
.
181.
Jiang
,
S.
,
Li
,
S.
,
Zhou
,
F.
, and
Lin
,
X.
,
2023
, “
Study on Lubricating Performance of the Bubbly Oil Under High Shear Rate—Part 2: Application Study in High-Speed Bearing
,”
ASME J. Tribol.
,
145
(
8
), p.
084103
.
182.
Wei
,
C.
,
Wang
,
W.
,
Liao
,
G.
,
Zhao
,
H.
, and
Xu
,
J.
,
2023
, “
Research on Two-Phase Thermo-Hydrodynamic Lubrication Performance Considering Bubble Dynamics
,”
Tribol. Int.
,
190
, p.
109040
.
183.
Zahari
,
N. M.
,
Zawawi
,
M. H.
,
Sidek
,
L. M.
,
Mohamad
,
D.
,
Itam
,
Z.
,
Ramli
,
M. Z.
,
Syamsir
,
A.
,
Abas
,
A.
, and
Rashid
,
M.
,
2018
, “
Introduction of Discrete Phase Model (DPM) in Fluid Flow: A Review
,” AIP Conference Proceedings, 2030(1), p.
020234
.
184.
Adeniyi
,
A. A.
,
Morvan
,
H. P.
, and
Simmons
,
K. A.
,
2014
, “
A Transient CFD Simulation of the Flow in a Test Rig of an Aeroengine Bearing Chamber
,”
Proceedings of the ASME Turbo Expo 2014: Turbine Technical Conference and Exposition. Volume 5C: Heat Transfer
, Düsseldorf, Germany, June 16–20,
American Society of Mechanical Engineers
.
185.
Liu
,
Z.
,
Liu
,
Y.
,
Zuo
,
H.
,
Wang
,
H.
, and
Fei
,
H.
,
2021
, “
Research on Bubble Monitoring Method of Lubricating Oil System Based on DPM Model
,”
2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing)
, Nanjing, China, Oct. 15–17,
IEEE
, pp.
1
5
.
186.
Hua
,
J.
,
2015
, “
CFD Simulations of the Effects of Small Dispersed Bubbles on the Rising of a Single Large Bubble in 2D Vertical Channels
,”
Chem. Eng. Sci.
,
123
, pp.
99
115
.
187.
Liu
,
Q.
, and
Luo
,
Z.-H.
,
2018
, “
CFD-VOF-DPM Simulations of Bubble Rising and Coalescence in Low Hold-Up Particle-Liquid Suspension Systems
,”
Powder Technol.
,
339
, pp.
459
469
.
188.
Yang
,
H.
,
Vanka
,
S. P.
, and
Thomas
,
B. G.
,
2018
, “
A Hybrid Eulerian–Eulerian Discrete-Phase Model of Turbulent Bubbly Flow
,”
ASME J. Fluids Eng.
,
140
(
10
), p.
101202
.
189.
Lapin
,
A.
, and
Lübbert
,
A.
,
1994
, “
Numerical Simulation of the Dynamics of Two-Phase Gas—Liquid Flows in Bubble Columns
,”
Chem. Eng. Sci.
,
49
(
21
), pp.
3661
3674
.
190.
Jung
,
Y.
,
Jang
,
G.
,
Jung
,
K.
,
Kang
,
C.
, and
Shin
,
H.
,
2014
, “
Behavior of a Micron-Sized Air Bubble in Operating FDBs Using the Discrete Phase Modeling Method
,”
Microsyst. Technol.
,
20
(
8–9
), pp.
1511
1521
.
191.
Farrall
,
M.
,
Hibberd
,
S.
, and
Simmons
,
K.
,
2008
, “
The Effect of Initial Injection Conditions on the Oil Droplet Motion in a Simplified Bearing Chamber
,”
ASME J. Eng. Gas Turbine Power
,
130
(
1
), p.
012501
.
192.
Nicoli
,
A.
,
Jefferson-Loveday
,
R.
, and
Simmons
,
K.
,
2019
, “
A New OpenFOAM Solver Capable of Modelling Oil Jet-Breakup and Subsequent Film Formation for Bearing Chamber Applications
,”
Proceedings of the ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery
, Phoenix, AZ, June 17–21,
American Society of Mechanical Engineers
.
193.
Hee
,
J. L.
,
Simmons
,
K.
,
Kakimpa
,
B.
, and
Hann
,
D.
,
2018
, “
Computationally Efficient Modelling of Oil Jet-Breakup and Film Formation for Bearing Chamber Applications
,”
Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. Volume 2C: Turbomachinery
, Oslo, Norway, June 11–15,
American Society of Mechanical Engineers
.
194.
Nicoli
,
A.
,
Johnson
,
K.
, and
Jefferson-Loveday
,
R.
,
2021
, “
Simulation of a Simplified Aeroengine Bearing Chamber Using a Fully Coupled Two-Way Eulerian Thin Film/Discrete Phase Approach Part I: Film Behavior Near the Bearing
,”
ASME J. Eng. Gas Turbine Power
,
143
(
10
), p.
101015
.
195.
Nicoli
,
A.
,
Johnson
,
K.
, and
Jefferson-Loveday
,
R.
,
2021
, “
Simulation of a Simplified Aeroengine Bearing Chamber Using a Fully Coupled Two-Way Eulerian Thin Film/Discrete Phase Approach Part II: Droplet Behavior in the Chamber
,”
ASME J. Eng. Gas Turbine Power
,
143
(
10
), p.
101016
.
196.
Kumar
,
S.
,
Kumar
,
V.
,
Patil
,
A.
, and
Nakod
,
P.
,
2021
, “
Spray Characterization of Elliptical Diesel Nozzles Using Hybrid VOF-to-DPM Transitional Approach in Large Eddy Simulation (LES) Framework
,”
15th Triennial International Conference on Liquid Atomization and Spray Systems, Edinburgh, UK, Aug. 29–Sept. 2
.
197.
Jin
,
W.
,
Xiao
,
J.
,
Ren
,
H.
,
Li
,
C.
,
Zheng
,
Q.
, and
Tong
,
Z.
,
2022
, “
Three-Dimensional Simulation of Impinging Jet Atomization of Soft Mist Inhalers Using the Hybrid VOF-DPM Model
,”
Powder Technol.
,
407
, pp.
117622
.
198.
Li
,
L.
,
Jiang
,
B.
,
Wei
,
G.
,
Li
,
X.
, and
Zhu
,
Z.
,
2022
, “
Multiscale Multiphase Flow Simulations Using Interface Capturing and Lagrangian Particle Tracking
,”
Phys. Fluids
,
34
(
12
), p. 121801.
199.
Shrestha
,
K.
,
Van Strien
,
J.
,
Fletcher
,
D. F.
, and
Inthavong
,
K.
,
2023
, “
Primary Spray Breakup From a Nasal Spray Atomizer Using Volume of Fluid to Discrete Phase Model
,”
Phys. Fluids
,
35
(
5
), p. 053312.
200.
Zhao
,
Y.
,
Liu
,
H. C.
,
Morales-Espejel
,
G. E.
, and
Venner
,
C. H.
,
2022
, “
Effects of Solid Viscoelasticity on Elastohydrodynamic Lubrication of Point Contacts
,”
Tribol. Int.
,
171
, pp.
107562
.
201.
Arya
,
U.
,
Sadeghi
,
F.
,
Conley
,
B.
,
Russell
,
T.
,
Peterson
,
W.
, and
Meinel
,
A.
,
2022
, “
Experimental Investigation of Cage Dynamics and Ball-Cage Contact Forces in an Angular Contact Ball Bearing
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
,
236
(
12
), pp.
2522
2534
.
202.
Wood
,
R. A. E.
,
1972
, “
Rolling Bearing Cages
,”
Tribology
,
5
(
1
), pp.
14
21
.
203.
Ashtekar
,
A.
, and
Sadeghi
,
F.
,
2012
, “
A New Approach for Including Cage Flexibility in Dynamic Bearing Models by Using Combined Explicit Finite and Discrete Element Methods
,”
ASME J. Tribol.
,
134
(
4
), p. 041502.
204.
Yang
,
Z.
,
Yu
,
T.
,
Zhang
,
Y.
, and
Sun
,
Z.
,
2017
, “
Influence of Cage Clearance on the Heating Characteristics of High-Speed Ball Bearings
,”
Tribol. Int.
,
105
, pp.
125
134
.
205.
Bossmanns
,
B.
, and
Tu
,
J. F.
,
1999
, “
A Thermal Model for High Speed Motorized Spindles
,”
Int. J. Mach. Tools Manuf.
,
39
(
9
), pp.
1345
1366
.
206.
Takabi
,
J.
, and
Khonsari
,
M. M.
,
2013
, “
Experimental Testing and Thermal Analysis of Ball Bearings
,”
Tribol. Int.
,
60
, pp.
93
103
.
207.
Eckmann
,
D. M.
,
Cavanagh
,
D. P.
, and
Branger
,
A. B.
,
2001
, “
Wetting Characteristics of Aqueous Surfactant-Laden Drops
,”
J. Colloid Interface Sci.
,
242
(
2
), pp.
386
394
.
208.
Groszek
,
A. J.
,
1968
, “
The Role of Oleophilic Surface in Lubrication
,”
Proc. Inst. Mech. Eng. Conf. Proc.
,
183
(
16
), pp.
197
201
.
209.
Ching
,
H. A.
,
Choudhury
,
D.
,
Nine
,
M. J.
, and
Abu Osman
,
N. A.
,
2014
, “
Effects of Surface Coating on Reducing Friction and Wear of Orthopaedic Implants
,”
Sci. Technol. Adv. Mater.
,
15
(
1
), pp.
014402
.
210.
Kröner
,
J.
,
Tremmel
,
S.
,
Kursawe
,
S.
,
Musayev
,
Y.
,
Hosenfeldt
,
T.
, and
Wartzack
,
S.
,
2015
, “
GreenBearings—Friction Behaviour of DLC-Coated Dry Running Deep Groove Ball Bearings
,”
Appl. Mech. Mater.
,
805
, pp.
147
153
.
211.
Kalin
,
M.
, and
Polajnar
,
M.
,
2013
, “
The Effect of Wetting and Surface Energy on the Friction and Slip in Oil-Lubricated Contacts
,”
Tribol. Lett.
,
52
(
2
), pp.
185
194
.
212.
Wong
,
P. L.
,
Zhao
,
Y.
, and
Mao
,
J.
,
2018
, “
Facilitating Effective Hydrodynamic Lubrication for Zero-Entrainment-Velocity Contacts Based on Boundary Slip Mechanism
,”
Tribol. Int.
,
128
, pp.
89
95
.
213.
Liu
,
C. L.
,
Guo
,
F.
,
Wong
,
P. L.
, and
Li
,
X. M.
,
2020
, “
Tribological Behaviour of Surfaces With Stepped Wettability Under Limited Lubricant Supply
,”
Tribol. Int.
,
141
, p.
105880
.
214.
Song
,
F.
,
Yang
,
X.
,
Dong
,
W.
,
Zhu
,
Y.
,
Wang
,
Z.
, and
Wu
,
M.
,
2022
, “
Research and Prospect of Textured Sliding Bearing
,”
Int. J. Adv. Manuf. Technol.
,
121
(
1–2
), pp.
1
25
.
215.
Buckley
,
D. H.
,
1981
,
Surface Effects in Adhesion, Friction, Wear, and Lubrication
,
Elsevier
,
New York
.
216.
Israelachvili
,
J. N.
,
1992
, “Adhesion, Friction and Lubrication of Molecularly Smooth Surfaces,”
Fundamentals of Friction: Macroscopic and Microscopic Processes
,
I. L. Singer and H. M. Polluck, eds., Springer
,
Netherlands, Dordrecht
, pp.
351
385
.
217.
Lugt
,
P. M.
,
2009
, “
A Review on Grease Lubrication in Rolling Bearings
,”
Tribol. Trans.
,
52
(
4
), pp.
470
480
.
218.
Lugt
,
P. M.
,
2016
, “
Modern Advancements in Lubricating Grease Technology
,”
Tribol. Int.
,
97
, pp.
467
477
.
219.
Mullett
,
G. W.
,
1973
, “
Grease Lubrication of Rolling Bearings
,”
Tribology
,
6
(
1
), pp.
21
28
.
220.
Cousseau
,
T.
,
Graça
,
B. M.
,
Campos
,
A. V.
, and
Seabra
,
J. H. O.
,
2012
, “
Influence of Grease Rheology on Thrust Ball Bearings Friction Torque
,”
Tribol. Int.
,
46
(
1
), pp.
106
113
.
221.
Lugt
,
P. M.
,
2012
,
Grease Lubrication in Rolling Bearings
,
Wiley
,
New York
.
222.
Noda
,
T.
,
Shibasaki
,
K.
,
Miyata
,
S.
, and
Taniguchi
,
M.
,
2020
, “
X-Ray CT Imaging of Grease Behavior in Ball Bearing and Numerical Validation of Multi-Phase Flows Simulation
,”
Tribol. Online
,
15
(
1
), pp.
36
44
.
223.
Lugt
,
P. M.
,
Velickov
,
S.
, and
Tripp
,
J. H.
,
2009
, “
On the Chaotic Behavior of Grease Lubrication in Rolling Bearings
,”
Tribol. Trans.
,
52
(
5
), pp.
581
590
.
224.
Mas
,
R.
, and
Magnin
,
A.
,
1996
, “
Rheological and Physical Studies of Lubricating Greases Before and After Use in Bearings
,”
ASME J. Tribol.
,
118
(
3
), pp.
681
686
.
225.
Wilson
,
A. R.
,
1979
, “
The Relative Thickness of Grease and Oil Films in Rolling Bearings
,”
Proc. Inst. Mech. Eng.
,
193
(
1
), pp.
185
192
.
226.
Shetty
,
P.
,
Meijer
,
R. J.
,
Osara
,
J. A.
,
Pasaribu
,
R.
, and
Lugt
,
P. M.
,
2023
, “
Effect of Grease Filling on the Film Thickness in Deep Groove Ball Bearings
,”
Tribol. Trans.
, 67(1), pp.
62
69
.
227.
Obata
,
T.
,
Fujiwara
,
H.
,
Itoigawa
,
F.
, and
Maegawa
,
S.
,
2024
, “
Effect of Grease Viscosity on Channeling Properties of Ball Bearings
,”
Lubricants
,
12
(
1
), pp.
13
.
228.
Pandya
,
M.
,
Tesini
,
P.
,
Bogliacino
,
F.
, and
Mandrile
,
F.
,
2024
, “
A Novel Numerical Analysis Method for Predicting Non-Newtonian Lubricant (Grease) Distribution in Ball Bearings
,”
Eng. Model. Anal Simul.
, 1(1).
229.
Wang
,
J.
,
Pandya
,
M. P.
, and
Greco
,
F.
,
2023
, “
Detection of Active Grease Reservoirs in Bearings by CFD
,”
Tribol. Int.
,
179
, pp.
108146
.
You do not currently have access to this content.