Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The hydrodynamic herringbone groove journal bearing (HGJB) performs exceptionally well at high speeds but is limited by a low load-carrying capacity, largely due to the lubrication characteristics of water. To address this issue, a hybrid water-lubricated HGJB is proposed in this study. A lubrication model for the high-speed hybrid water-lubricated HGJB is developed, taking into account turbulence, thermal effects, and tilt. A comparative analysis of the static characteristics is conducted between the hybrid HGJB and both the hydrodynamic HGJB and the hybrid plain journal bearing (PJB). The results show that the proposed hybrid water-lubricated HGJB offers significantly greater load-carrying capacity than the conventional hydrodynamic HGJB, particularly during start-up or at low speeds. For example, when the bearing operates at 1000 rpm with an eccentricity ratio of 0.5, the load-carrying capacity of the water-lubricated hybrid HGJB under a supply pressure of 1.6 MPa reaches 650 N, compared to just 261 N for the water-lubricated hydrodynamic HGJB. Additionally, the hybrid water-lubricated HGJB demonstrates a higher flowrate and lower temperature rise than the traditional hybrid PJB, thanks to the improved pumping effect of the herringbone grooves at high speeds.

References

1.
Huang
,
X.
,
Xu
,
G.
, and
Jiang
,
S. Y.
,
2023
, “
Static Characteristics of Water-Lubricated Hydrodynamic Spiral-Groove Journal and Thrust Bearings for Motorized Spindle
,”
ASME J. Tribol.
,
145
(
12
), p.
124501
.
2.
Whipple
,
R.
,
1951
, “
Theory of the Spiral Grooved Thrust Bearing With Liquid or Gas Lubricant
,”
Atomic Energy Research Establishment
,
Harwell, Berks, UK
, Report No. A.E.R.E. Report T/R 622.
3.
Hirs
,
G. G.
,
1965
, “
Load Capacity and Stability Characteristics of Hydrodynamic Grooved Journal Bearings
,”
Tribol. Trans.
,
8
(
3
), pp.
296
305
.
4.
Malanoski
,
S. B.
, and
Pan
,
C. H. T.
,
1965
, “
The Static and Dynamic Characteristics of the Spiral-Grooved Thrust Bearing
,”
J. Basic Eng.
,
87
(
3
), pp.
547
555
.
5.
Iseli
,
E.
,
Guenat
,
E.
,
Tresch
,
R.
, and
Schiffmann
,
J.
,
2020
, “
Analysis of Spiral-Grooved Gas Journal Bearings by the Narrow-Groove Theory and the Finite Element Method at Large Eccentricities
,”
ASME J. Tribol.
,
142
(
4
), p.
041802
.
6.
Bonneau
,
D.
, and
Absi
,
J.
,
1994
, “
Analysis of Aerodynamic Journal Bearings With Small Number of Herringbone Grooves by Finite-Element Method
,”
ASME J. Tribol.
,
116
(
4
), pp.
698
704
.
7.
Chen
,
S. K.
,
Chou
,
H. C.
, and
Kang
,
Y.
,
2012
, “
Stability Analysis of Hydrodynamic Bearing With Herringbone Grooved Sleeve
,”
Tribol. Int.
,
55
, pp.
15
28
.
8.
Jang
,
G. H.
, and
Yoon
,
J. W.
,
2002
, “
Nonlinear Dynamic Analysis of a Hydrodynamic Journal Bearing Considering the Effect of a Rotating or Stationary Herringbone Groove
,”
ASME J. Tribol.
,
124
(
2
), pp.
297
304
.
9.
Li
,
Y.
,
Ning
,
Y. Q.
,
Zhang
,
D. S.
, and
Zhi
,
Y. H.
,
2023
, “
A Model of Hydrodynamic Bearings With Circumferential Parallel Arranged Grooves
,”
ASME J. Tribol.
,
145
(
10
), p.
104102
.
10.
Chen
,
C. Y.
,
Liu
,
C. S.
,
Li
,
Y. C.
, and
Mou
,
S.
,
2015
, “
Geometry Optimization for Asymmetrical Herringbone Grooves of Miniature Hydrodynamic Journal Bearings by Using Taguchi Technique
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
229
(
2
), pp.
196
206
.
11.
Yu
,
Y. L.
,
Pu
,
G.
,
Jiang
,
T. C.
, and
Jiang
,
K. L.
,
2021
, “
Optimization of Herringbone Grooved Thrust air Bearings for Maximum Load Capacity
,”
ASME J. Tribol.
,
143
(
12
), p.
121805
.
12.
Bätting
,
P. K.
,
Wagner
,
P. H.
, and
Schiffmann
,
J. A.
,
2022
, “
Experimental Investigation of Enhanced Grooves for Herringbone Grooved Journal Bearings
,”
ASME J. Tribol.
,
144
(
9
), p.
091801
.
13.
Feng
,
K.
,
Huang
,
Z.
, and
Guo
,
Z. Y.
,
2015
, “
Design of Spherical Spiral Groove Bearings for a High-Speed Air-Lubricated Gyroscope
,”
Tribol. Trans.
,
58
(
6
), pp.
1084
1095
.
14.
Liu
,
W. H.
,
Gjika
,
K.
, and
Schiffmann
,
J.
,
2023
, “
Design and Experimental Investigation of a Herringbone Grooved Gas Bearing Supported Turbocharger
,”
Mech. Syst. Signal Process.
,
186
, p.
109828
.
15.
Schlums
,
H.
,
Huhne
,
C.
, and
Sinapius
,
M.
,
2022
, “
Design of a Herringbone-Grooved Bearing for Application in an Electrically Driven Air Compressor
,”
Machines
,
10
(
8
), p.
10080622
.
16.
Wagner
,
P. H.
,
Van herle
,
J.
, and
Schiffmann
,
J.
,
2020
, “
Theoretical and Experimental Investigation of a Small-Scale, High-Speed, and Oil-Free Radial Anode Off-Gas Recirculation Fan for Solid Oxide Fuel Cell Systems
,”
ASME J. Eng. Gas Turbines Power
,
142
(
4
), p.
041023
.
17.
Kim
,
M.
,
Jang
,
G.
, and
Kim
,
H.
,
2010
, “
Stability Analysis of a Disk-Spindle System Supported by Coupled Journal and Thrust Bearings Considering Five Degrees of Freedom
,”
Tribol. Int.
,
43
(
8
), pp.
1479
1490
.
18.
Hattori
,
H.
,
Fukushima
,
H.
,
Yoshii
,
Y.
,
Nakamuta
,
H.
,
Iwase
,
M.
, and
Kitade
,
K.
,
2009
, “
Proposal of a High Rigidity and High Speed Rotating Mechanism Using a New Concept Hydrodynamic Bearing in X-Ray Tube for High Speed Computed Tomography
,”
J. Adv. Mech. Des. Syst. Manuf.
,
3
(
1
), pp.
105
114
.
19.
Zhang
,
L.
,
Sun
,
J.
,
Ma
,
C.
, and
Zhang
,
Y.
,
2019
, “
Analysis of Hydrodynamic Characteristics of Guide Hybrid-Bearings for Sodium-Cooled Fast Reactor Coolant Pumps
,”
J. Drain. Irrig. Mach. Eng.
,
37
(
5
), pp.
427
434
.
20.
Feng
,
H. H.
,
Jiang
,
S. Y.
, and
Ji
,
A. M.
,
2019
, “
Investigations of the Static and Dynamic Characteristics of Water-Lubricated Hydrodynamic Journal Bearing Considering Turbulent, Thermohydrodynamic and Misaligned Effects
,”
Tribol. Int.
,
130
, pp.
245
260
.
21.
Jiang
,
S. Y.
,
Liu
,
P. F.
, and
Lin
,
X. H.
,
2022
, “
Study on Static Characteristics of Water-Lubricated Textured Spiral Groove Thrust Bearing Using Laminar Cavitating Flow Lubrication Model
,”
ASME J. Tribol.
,
144
(
4
), p.
041803
.
22.
Yang
,
T. Y.
,
Cai
,
J. L.
,
Wang
,
L. W.
,
Tang
,
D. X.
,
Chen
,
S. A.
, and
Wang
,
J. X.
,
2023
, “
Numerical Analysis of Turbulence Effect for Coupled Journal-Thrust Water-Lubricated Bearing With Micro Grooves
,”
ASME J. Tribol.
,
145
(
8
), p.
084101
.
23.
Xu
,
B.
,
Guo
,
H.
,
Wu
,
X. F.
,
He
,
Y. F.
,
Wang
,
X. Z.
, and
Bai
,
J. H.
,
2022
, “
Static and Dynamic Characteristics and Stability Analysis of High-Speed Water-Lubricated Hydrodynamic Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
236
(
4
), pp.
701
720
.
24.
Chen
,
C. H.
, and
Chen
,
C. K.
,
1989
, “
The Influence of Fluid Inertia on the Operating Characteristics of Finite Journal Bearings
,”
Wear
,
131
(
2
), pp.
229
240
.
25.
Wang
,
C. C.
, and
He
,
C. L.
,
2019
, “
Numerical Study of a Hydrodynamic Journal Bearing With Herringbone Grooves for Oil Leakage Reduction
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
233
(
3
), pp.
439
446
.
26.
Li
,
P.
,
Shi
,
Z. Q.
,
Zhang
,
H.
,
Li
,
X.
,
Xiao
,
S.
, and
Gu
,
F. S.
,
2023
, “
Effect of Micro-Grooved Surface on the Static and Dynamic Characteristics of Journal Bearings With Misalignment
,”
Proc. Inst. Mech. Eng. Part J J. Eng. Tribol.
,
237
(
5
), pp.
1042
1069
.
27.
Xu
,
G.
,
Huang
,
X.
, and
Jiang
,
S. Y.
,
2023
, “
An Experimental and Theoretical Approach for Stiffness of Machine Tool Spindle With Fluid Bearings
,”
Int. J. Adv. Manuf. Technol.
,
128
(
1–2
), pp.
167
180
.
28.
Lin
,
X. H.
,
Jiang
,
S. Y.
,
Zhang
,
C. B.
, and
Liu
,
X.
,
2018
, “
Thermohydrodynamic Analysis of High Speed Water-Lubricated Spiral Groove Thrust Bearing Considering Effects of Cavitation, Inertia and Turbulence
,”
Tribol. Int.
,
119
, pp.
645
658
.
29.
Liu
,
Z. T.
,
2019
, “
Test Research on Dynamic Parameters of High-Speed Water-Lubricated Hydrodynamic Spiral Groove Bearings
,”
M.S. thesis
,
Southeast University
,
Nanjing, China
.
You do not currently have access to this content.