Abstract

Polyoxymethylene (POM) and its composites with excellent mechanical properties are often used as alternative materials in gear transmission design. This paper considers the practical application scenario of POM gears, using a pin-on-disk tribometer to simulate the Hertzian contact and sliding part of gear mesh. The effects of polytetrafluoroethylene (PTFE) content (0%, 5%, 10%, and 15%), maximum contact pressure (40 MPa and 60 MPa), sliding speed (0.1 m/s and 0.5 m/s), and ambient temperature (room temperature and 70 °C) on the tribological properties of POM composites under self-mated contact are investigated. The results show that the tribological properties of the composites tend to improve with the increase of PTFE content under the two ambient temperature conditions, reaching the optimum at 15% PTFE content. However, the addition of PTFE does not improve the tribological properties of the composites under the most severe conditions of 70 °C and a pressure–velocity (PV) value of 30 MPa m/s. At two ambient temperatures, pure POM and its composites exhibit the lowest friction coefficient at a PV value of 6 MPa m/s and the smallest specific wear-rate at a PV value of 20 MPa m/s. The friction coefficient of composites decreases with an increase in ambient temperature from room temperature to 70 °C at a sliding speed of 0.1 m/s but increases at a sliding speed of 0.5 m/s. Analysis of variance (ANOVA) results indicate that all factors are significant, except for temperature which does not have a significant effect on the friction coefficient. Additionally, this paper analyzes the wear mechanisms of composites.

References

1.
Stachowiak
,
G.
, and
Batchelor
,
A. W.
,
2013
,
Engineering Tribology
,
Butterworth-Heinemann
,
Oxford, UK
.
2.
Sun
,
L.
,
Yang
,
Z.
, and
Li
,
X.
,
2008
, “
Mechanical and Tribological Properties of Polyoxymethylene Modified With Nanoparticles and Solid Lubricants
,”
Polym. Eng. Sci.
,
48
(
9
), pp.
1824
1832
.
3.
Chen
,
J.
,
Cao
,
Y.
, and
Li
,
H.
,
2006
, “
An Investigation on Wear Mechanism of POM/LLDPE Blends
,”
J. Appl. Polym. Sci.
,
101
(
1
), pp.
48
53
.
4.
Matkovič
,
S.
, and
Kalin
,
M.
,
2021
, “
Effects of Slide-to-Roll Ratio and Temperature on the Tribological Behaviour in Polymer-Steel Contacts and a Comparison With the Performance of Real-Scale Gears
,”
Wear
,
477
, p.
203789
.
5.
Jain
,
M.
, and
Patil
,
S.
,
2023
, “
A Review on Materials and Performance Characteristics of Polymer Gears
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
237
(
12
), pp.
2762
2790
.
6.
Kurokawa
,
M.
,
Uchiyama
,
Y.
,
Iwai
,
T.
, and
Nagai
,
S.
,
2003
, “
Performance of Plastic Gear Made of Carbon Fiber Reinforced Polyamide 12
,”
Wear
,
254
(
5–6
), pp.
468
473
.
7.
Liu
,
Q.
,
Luo
,
W.
,
Zhou
,
S.
,
Zou
,
H.
, and
Liang
,
M.
,
2017
, “
Tribological Behavior and Morphology of PTFE Particulate-Reinforced POM Matrix Composites
,”
J. Polym. Eng.
,
37
(
3
), pp.
227
237
.
8.
Czichos
,
H.
,
1983
, “
Influence of Adhesive and Abrasive Mechanisms on the Tribological Behavior of Thermoplastic Polymers
,”
Wear
,
88
(
198
), pp.
27
43
.
9.
Hu
,
X.
,
1998
, “
Tribological Behaviour of Modified Polyacetal Against MC Nylon Without Lubrication
,”
Tribol. Lett.
,
5
(
4
), pp.
313
317
.
10.
Kurokawa
,
M.
,
Uchiyama
,
Y.
, and
Nagai
,
S.
,
2000
, “
Tribological Properties and Gear Performance of Polyoxymethylene Composites
,”
ASME J. Tribol.
,
122
(
4
), pp.
809
814
.
11.
Huang
,
C. Y.
, and
Tseng
,
C. I.
,
2000
, “
The Effect of Interface Modification Between POM and PTFE on the Properties of POM/PTFE Composites
,”
J. Appl. Polym. Sci.
,
78
(
4
), pp.
800
807
.
12.
He
,
J.
,
Zhang
,
L.
,
Li
,
C.
,
Yan
,
B.
, and
Tang
,
R.
,
2011
, “
The Effects of Copper and Polytetrafluoroethylene (PTFE) on Thermal Conductivity and Tribological Behavior of Polyoxymethylene (POM) Composites
,”
J. Macromol. Sci. Part B
,
50
(
10
), pp.
2023
2033
.
13.
Gao
,
Y.
,
Sun
,
S.
,
He
,
Y.
,
Wang
,
X.
, and
Wu
,
D.
,
2011
, “
Effect of Poly (Ethylene Oxide) on Tribological Performance and Impact Fracture Behavior of Polyoxymethylene/Polytetrafluoroethylene Fiber Composites
,”
Composites Part B
,
42
(
7
), pp.
1945
1955
.
14.
Zhang
,
L.
,
Qi
,
H.
,
Li
,
G.
,
Zhang
,
G.
,
Wang
,
T.
, and
Wang
,
Q.
,
2017
, “
Impact of Reinforcing Fillers’ Properties on Transfer Film Structure and Tribological Performance of POM-Based Materials
,”
Tribol. Int.
,
109
, pp.
58
68
.
15.
Goriparthi
,
B. K.
,
Naveen
,
P. N. E.
,
Shankar
,
H. R.
, and
Ghosh
,
S.
,
2019
, “
Mechanical, Wear and Fatigue Behavior of Functionalized CNTs Reinforced POM/PTFE Composites
,”
Mater. Res. Express
,
6
(
6
), p.
065051
.
16.
Huang
,
T.
,
Lu
,
R.
,
Wang
,
H.
,
Ma
,
Y.
,
Tian
,
J.
, and
Li
,
T.
,
2011
, “
Investigation on the Tribological Properties of POM Modified by Nano-PTFE
,”
J. Macromol. Sci. Part B
,
50
(
7
), pp.
1235
1248
.
17.
Zhang
,
H.
,
Wu
,
Y.
,
Liang
,
M.
,
Wu
,
H.
,
Zou
,
H.
,
Chen
,
Y.
, and
Zhou
,
S.
,
2022
, “
Comparative Study on the Mechanical, Tribological, and Thermal Properties of POM Composites Filled With Different PTFE
,”
J. Thermoplast. Compos. Mater.
,
35
(
9
), pp.
1319
1341
.
18.
Zhou
,
S.
,
Wu
,
Y.
,
Zou
,
H.
,
Liang
,
M.
, and
Chen
,
Y.
,
2021
, “
Tribological Properties of PTFE Fiber Filled Polyoxymethylene Composites: The Influence of Fiber Orientation
,”
Compos. Commun.
,
28
, p.
100918
.
19.
Pleskachevsky
,
Y. M.
, and
Smurugov
,
V. A.
,
1997
, “
Thermal Fluctuations at PTFE Friction and Transfer
,”
Wear
,
209
(
1–2
), pp.
123
127
.
20.
Chang
,
L.
,
Zhang
,
Z.
,
Ye
,
L.
, and
Friedrich
,
K.
,
2007
, “
Tribological Properties of High Temperature Resistant Polymer Composites With Fine Particles
,”
Tribol. Int.
,
40
(
7
), pp.
1170
1178
.
21.
Ramesh
,
V.
,
van Kuilenburg
,
J.
, and
Wits
,
W. W.
,
2019
, “
Experimental Analysis and Wear Prediction Model for Unfilled Polymer–Polymer Sliding Contacts
,”
Tribol. Trans.
,
62
(
21
), pp.
176
188
.
22.
Kurdi
,
A.
,
Kan
,
W. H.
, and
Chang
,
L.
,
2019
, “
Tribological Behaviour of High Performance Polymers and Polymer Composites at Elevated Temperature
,”
Tribol. Int.
,
130
, pp.
94
105
.
23.
Siddiqui
,
M. S. N.
,
Pogacnik
,
A.
, and
Kalin
,
M.
,
2023
, “
Influence of Load, Sliding Speed and Heat-Sink Volume on the Tribological Behaviour of Polyoxymethylene (POM) Sliding Against Steel
,”
Tribol. Int.
,
178
, p.
108029
.
24.
Diab
,
Y.
,
Ville
,
F.
, and
Velex
,
P.
,
2006
, “
Prediction of Power Losses Due to Tooth Friction in Gears
,”
Tribol. Trans.
,
49
(
2
), pp.
260
270
.
25.
Diez-Ibarbia
,
A.
,
Fernandez-del-Rincon
,
A.
,
De-Juan
,
A.
,
Iglesias
,
M.
,
Garcia
,
P.
, and
Viadero
,
F.
,
2018
, “
Frictional Power Losses on Spur Gears With Tip Reliefs. The Friction Coefficient Role
,”
Mech. Mach. Theory
,
121
, pp.
15
27
.
26.
Li
,
X.
, and
Olofsson
,
U.
,
2015
, “
FZG Gear Efficiency and Pin-on-Disc Frictional Study of Sintered and Wrought Steel Gear Materials
,”
Tribol. Lett.
,
60
(
1
), pp.
1
10
.
27.
Bahadur
,
S.
,
2000
, “
The Development of Transfer Layers and Their Role in Polymer Tribology
,”
Wear
,
245
(
1–2
), pp.
92
99
.
28.
Franke
,
R.
,
Lehmann
,
D.
, and
Kunze
,
K.
,
2007
, “
Tribological Behaviour of New Chemically Bonded PTFE Polyamide Compounds
,”
Wear
,
262
(
3–4
), pp.
242
252
.
29.
Larson
,
M. G.
, and
Timpe
,
S. J.
,
2017
, “
Effect of Load and Temperature on the Tribological Characteristics of a Steel Pin on Polyoxymethylene Disk Interface
,”
ASME J. Tribol.
,
139
(
5
), p.
051603
.
30.
Song
,
F.
,
Wang
,
Q.
, and
Wang
,
T.
,
2016
, “
The Effects of Crystallinity on the Mechanical Properties and the Limiting PV (Pressure × Velocity) Value of PTFE
,”
Tribol. Int.
,
93
, pp.
1
10
.
31.
Odi-Owei
,
S.
, and
Schipper
,
D. J.
,
1991
, “
Tribological Behaviour of Unfilled and Composite Polyoxymethylene
,”
Wear
,
148
(
2
), pp.
363
376
.
32.
Kukureka
,
S. N.
,
Chen
,
Y. K.
,
Hooke
,
C. J.
, and
Liao
,
P.
,
1995
, “
The Wear Mechanisms of Acetal in Unlubricated Rolling-Sliding Contact
,”
Wear
,
185
(
1–2
), pp.
1
8
.
33.
Saisnith
,
V.
, and
Fridrici
,
V.
,
2021
, “
A Study of the Wear Damage of a PTFE Coating: The Effects of Temperature and Environment on Its Mechanical and Tribological Properties
,”
Wear
,
480
, p.
203946
.
34.
Chang
,
L.
,
Friedrich
,
K.
, and
Ye
,
L.
,
2014
, “
Study on the Transfer Film Layer in Sliding Contact Between Polymer Composites and Steel Disks Using Nanoindentation
,”
ASME J. Tribol.
,
136
(
2
), p.
021602
.
35.
Li
,
J.
,
Liu
,
J.
,
Peng
,
S.
,
Li
,
W.
,
Du
,
S.
, and
Zhang
,
Y.
,
2022
, “
Tribological Properties of PTFE/Kevlar Fabric Composites at Different Twill Orientations
,”
Tribol. Int.
,
174
, p.
107752
.
36.
Unal
,
H.
,
Yetgin
,
S. H.
,
Mimaroglu
,
A.
, and
Sumer
,
M.
,
2010
, “
The Effect of Test Parameters on Friction and Wear Performance of PTFE and PTFE Composites
,”
J. Reinforce. Plast. Compos.
,
29
(
13
), pp.
1978
1986
.
37.
Jia
,
B. B.
,
Li
,
T. S.
,
Liu
,
X. J.
, and
Cong
,
P. H.
,
2007
, “
Tribological Behaviors of Several Polymer–Polymer Sliding Combinations Under Dry Friction and Oil-Lubricated Conditions
,”
Wear
,
262
(
11–12
), pp.
1353
1359
.
38.
Maeda
,
N.
,
Chen
,
N.
,
Tirrell
,
M.
, and
Israelachvili
,
J. N.
,
2002
, “
Adhesion and Friction Mechanisms of Polymer-on-Polymer Surfaces
,”
Science
,
297
(
5580
), pp.
379
382
.
39.
Sujuan
,
Y.
, and
Xingrong
,
Z.
,
2014
, “
Tribological Properties of PTFE and PTFE Composites at Different Temperatures
,”
Tribol. Trans.
,
57
(
3
), pp.
382
386
.
40.
Friedrich
,
K.
,
Burkhart
,
T.
,
Almajid
,
A. A.
, and
Haupert
,
F.
,
2010
, “
Poly-Para-Phenylene-Copolymer (PPP): A High-Strength Polymer With Interesting Mechanical and Tribological Properties
,”
Int. J. Polym. Mater.
,
59
(
9
), pp.
680
692
.
41.
Wang
,
B.
,
Tang
,
W.
,
Lu
,
H.
, and
Huang
,
Z.
,
2016
, “
Ionic Liquid Capped Carbon Dots as a High-Performance Friction-Reducing and Antiwear Additive for Poly (Ethylene Glycol)
,”
J. Mater. Chem. A
,
4
(
19
), pp.
7257
7265
.
You do not currently have access to this content.