Graphical Abstract Figure

ZRT/PEEK film cross section

Graphical Abstract Figure

ZRT/PEEK film cross section

Close modal

Abstract

The aerospace industry aims for net-zero greenhouse gas emissions by 2050, requiring gas turbine engines to reduce CO2 emissions. This will impact engine material selection due to harsher operating conditions, limiting traditional metal/alloy use. While fiber-reinforced polymer (FRP) composites are commonly used in the aerospace industry, their use in gas turbine engines is often restricted by the lower operating temperatures of the polymer matrix. However, many studies have demonstrated the tribological potential of FRP in the fan section of the engines, but little attention has been given to the potential of orienting the fibers in the normal (i.e., out-of-plane) direction relative to the wear surface to leverage the anisotropic properties of FRP composites. This study investigates the impact of fiber orientation on the tribological properties of carbon fiber/polyetheretherketone (PEEK) (CF-PEEK) at elevated temperatures. Three CF-PEEK samples with different fiber orientations were selected for this study (parallel, antiparallel, and normal directions), as well as a fourth sample of pure PEEK. Tribological tests were conducted using a ball-on-disk tribometer at an elevated temperature of 200 °C to evaluate wear and friction behavior. The worn surfaces and counterfaces were analyzed using confocal laser scanning microscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS). The findings reveal that CF-PEEK with fibers oriented in the normal direction demonstrates significantly enhanced tribological performance at elevated temperatures, achieving a 95% reduction in the friction coefficient and a 92% decrease in the wear-rate compared to pure PEEK. A wear mechanism has been proposed to explain the superior wear resistance of normally oriented fibers in CF-PEEK, linking it to the development of a fiber-based interface during the run-in phase and the formation of a uniform transfer film.

References

1.
Stoyanov
,
P.
,
Harrington
,
K. M.
, and
Frye
,
A.
,
2020
, “
Insights Into the Tribological Characteristic of Cu-Based Coatings Under Extreme Contact Conditions
,”
JOM
,
72
(
6
), pp.
2191
2197
.
2.
Komshin
,
A. S.
, and
Pronyakin
,
V. I.
,
2020
, “
Modern Diagnostics of Aircraft Gas Turbine Engines
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
714
(
1
), p.
012010
.
3.
Cullinane
,
W. F.
, and
Strange
,
R. R.
,
1999
, “Gas Turbine Engine Validation Instrumentation: Measurements, Sensors, and Needs,”
Harsh Environment Sensors II
,
A.
Wang
, ed.,
SPIE
,
Boston, MA
, pp.
2
13
.
4.
Spittle
,
P.
,
2003
, “
Gas Turbine Technology
,”
Phys. Educ.
,
38
(
6
), pp.
504
511
.
5.
Kear
,
B. H.
, and
Thompson
,
E. R.
,
1980
, “
Aircraft Gas Turbine Materials and Processes
,”
Science
,
208
(
4446
), pp.
847
856
.
6.
Meetham
,
G. W.
,
1988
, “
High Temperature Materials in Gas Turbine Engines
,”
Mater. Des.
,
9
(
4
), pp.
213
219
.
7.
Transport Canada
, “
Canada’s Aviation Climate Action Plan
,”
Transport Canada
,
Canada
, https://tc.canada.ca/en/corporate-services/policies/canada-s-aviation-climate-action-plan, Accessed May 15, 2024.
8.
Hasan
,
M. A.
,
Mamun
,
A. A.
,
Rahman
,
S. M.
,
Malik
,
K.
,
Al Amran
,
M. I. U.
,
Khondaker
,
A. N.
,
Reshi
,
O.
, et al
,
2021
, “
Climate Change Mitigation Pathways for the Aviation Sector
,”
Sustainability
,
13
(
7
), p.
3656
.
9.
Wu
,
X.
,
Beres
,
W.
, and
Yandt
,
S.
,
2008
, “
Challenges in Life Prediction of Gas Turbine Critical Components
,”
Can. Aeronaut. Space J.
,
54
(
2
), pp.
31
39
.
10.
Kurz
,
R.
, and
Brun
,
K.
,
2000
, “
Degradation in Gas Turbine Systems
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
70
77
.
11.
Bernstein
,
H. L.
,
2006
,
Materials Issues For Users of Gas Turbines.
,
Texas A&M University. Turbomachinery Laboratories
,
San Antonio, TX
.
12.
Park
,
S.-J.
, and
Seo
,
M.-K.
,
2011
, “Chapter 7—Types of Composites,”
Interface Science and Technology
, Vol.
18
,
S.-J.
Park
, and
M.-K.
Seo
, eds.,
Elsevier
,
New York
, pp.
501
629
.
13.
Wang
,
B.
, and
Gao
,
H.
,
2021
, “Fiber Reinforced Polymer Composites,”
Advances in Machining of Composite Materials. Engineering Materials
,
S.
Islam
, and
H.
Dehong
, eds.,
Springer, Cham
, pp.
15
43
.
14.
Das
,
S.
,
2011
, “
Life Cycle Assessment of Carbon Fiber-Reinforced Polymer Composites
,”
Int. J. Life Cycle Assess.
,
16
(
3
), pp.
268
282
.
15.
Soutis
,
C.
,
2005
, “
Fiber Reinforced Composites in Aircraft Construction
,”
Prog. Aerosp. Sci.
,
41
(
2
), pp.
143
151
.
16.
Ren
,
Y.
,
Zhang
,
L.
,
Xie
,
G.
,
Li
,
Z.
,
Chen
,
H.
,
Gong
,
H.
,
Xu
,
W.
,
Guo
,
D.
, and
Luo
,
J.
,
2021
, “
A Review on Tribology of Polymer Composite Coatings
,”
Friction
,
9
(
3
), pp.
429
470
.
17.
Aliukov
,
S. V.
,
Kheruvimov
,
A. V.
, and
Nikonov
,
A. V.
,
2018
, “
Polymer Composite Materials and Their Application in Designs of Gas Turbine Engine
,”
4th International Conference on Condensed Matter and Materials Physics
,
London, UK
.
18.
Balakrishnan
,
P.
,
John
,
M. J.
,
Pothen
,
L.
,
Sreekala
,
M. S.
, and
Thomas
,
S.
,
2016
, “12—Natural Fiber and Polymer Matrix Composites and Their Applications inAerospace Engineering,”
Advanced Composite Materials for Aerospace Engineering
,
S.
Rana
, and
R.
Fangueiro
, eds.,
Woodhead Publishing
,
Cambridge, MA
, pp.
365
383
.
19.
Friedrich
,
K.
,
2018
, “
Polymer Composites for Tribological Applications
,”
Adv. Ind. Eng. Polym. Res.
,
1
(
1
), pp.
3
39
.
20.
Pei
,
X.
,
Han
,
W.
,
Ding
,
G.
,
Wang
,
M.
, and
Tang
,
Y.
,
2019
, “
Temperature Effects on Structural Integrity of Fiber-Reinforced Polymer Matrix Composites: A Review
,”
J. Appl. Polym. Sci.
,
136
(
45
), pp.
1
19
.
21.
Centrich
,
X. T.
,
Shehab
,
E.
,
Sydor
,
P.
,
Mackley
,
T.
,
John
,
P.
, and
Harrison
,
A.
,
2014
, “
An Aerospace Requirements Setting Model to Improve System Design
,”
Procedia CIRP
,
22
(
1
), pp.
287
292
.
22.
Chang
,
B.
,
Gu
,
J.
,
Long
,
Z.
,
Li
,
Z.
,
Ruan
,
S.
, and
Shen
,
C.
,
2020
, “
Effects of Temperature and Fiber Orientation on the Tensile Behavior of Short Carbon Fiber Reinforced PEEK Composites
,”
Polym. Compos.
,
42
(
2
), pp.
597
607
.
23.
Rasheva
,
Z.
,
Zhang
,
G.
, and
Burkhart
,
T.
,
2010
, “
A Correlation Between the Tribological and Mechanical Properties of Short Carbon Fibers Reinforced PEEK Materials With Different Fiber Orientations
,”
Tribol. Int
,
43
(
8
), pp.
1430
1437
.
24.
Abdelbary
,
A.
, and
Mohamed
,
Y. S.
,
2021
, “Chapter 4—Tribological Behavior of Fiber-Reinforced Polymer Composites,”
Tribology of Polymer Composites
(Elsevier Series on Tribology and Surface Engineering),
S. M.
Rangappa
,
S.
Siengchin
,
J.
Parameswaranpillai
, and
K.
Friedrich
, eds.,
Elsevier
,
New York
, pp.
63
94
.
25.
Mody
,
P. B.
,
Chou
,
T.
, and
Friedrich
,
K.
,
1988
, “
Effect of Testing Conditions and Microstructure on the Sliding Wear of Graphite Fiber/PEEK Matrix Composites
,”
J. Mater. Sci.
,
23
(
12
), pp.
4319
4330
.
26.
Sarath
,
P. S.
,
Reghunath
,
R.
,
Haponiuk
,
J. T.
,
Thomas
,
S.
, and
George
,
S. C.
,
2021
, “Tribology of Fiber Reinforced Polymer Composites: Effect of Fiber Length, Fiber Orientation, and Fiber Size,”
Tribological Applications of Composite Materials
,
M. T.
Hameed Sultan
,
M. R.
Mohd Jamir
,
M. S.
Abdul Majid
,
A. I.
Azmi
, and
N.
Saba
, eds.,
Springer
,
New York, Singapore
, pp.
99
117
.
27.
Parikh
,
H. H.
, and
Gohil
,
P. P.
,
2015
, “
Tribology of Fiber Reinforced Polymer Matrix Composites—A Review
,”
J. Reinf. Plast. Compos.
,
34
(
16
), pp.
1340
1346
.
28.
Toray Cetex® TC1200—Toray Advanced Composites
.” https://www.toraytac.com/product-explorer/products/ovl4/Toray-Cetex-TC1200, Accessed September 19, 2024.
29.
Gardiner
,
G.
, “Z-Direction Composite Properties on an Affordable, Industrial Scale,” https://www.compositesworld.com/articles/z-direction-composite-properties-on-an-affordable-industrial-scale, Accessed May 15, 2024.
30.
Holmberg
,
K.
, and
Matthews
,
A.
,
2009
,
Coatings Tribology: Properties, Mechanisms, Techniques and Applications in Surface Engineering
,
Elsevier
,
New York
.
31.
Kurtz
,
S. M.
,
2019
,
PEEK Biomaterials Handbook
(
PDL Handbook Series
), 2nd ed.,
Elsevier: William Andrew Applied Science Publishers
,
Oxford, UK
.
32.
Ye
,
J.
,
Burris
,
D. L.
, and
Xie
,
T.
,
2016
, “
A Review of Transfer Films and Their Role in Ultra-Low-Wear Sliding of Polymers
,”
Lubricants
,
4
(
1
), pp.
4
. Art. no. 1,
33.
Hutchings
,
I.
, and
Shipway
,
P.
,
2017
,
Tribology: Friction and Wear of Engineering Materials
, 2nd ed.,
Butterworth-Heinemann
,
London, UK
, p.
388
.
34.
Panin, S. V., Alexenko, V. O., and Buslovich, D. G., 2022, “High Performance Polymer Composites: A Role of Transfer Films in Ensuring Tribological Properties—A Review,” Polymers, 14(5), p. 975, Art. No. 5.10.3390/polym14050975.
You do not currently have access to this content.