This analytical study discusses the system aspects of active stability enhancement using mass flow injection in front of the rotor blade tip of a high pressure compressor. Tip injection is modeled as a recirculating bleed in a performance simulation of a commercial turbofan engine. A map correction procedure accounts for the changes in compressor characteristics caused by injection. The correction factors are derived from stage stacking calculations, which include a simple correlation for stability enhancement. The operational characteristic of the actively controlled engine is simulated in steady and transient states. The basic steady-state effect consists of a local change in mass flow and a local increase in gas temperature. This alters the component matching in the engine. The mechanism can be described by the compressor-to-turbine flow ratio and the injection temperature ratio. Both effects reduce the cycle efficiency resulting in an increased turbine temperature and fuel consumption at constant thrust. The negative performance impact becomes negligible if compressor recirculation is only employed at the transient part power and if valves remain closed at the steady-state operation. Detailed calculations show that engine handling requirements and temperature limits will still be met. Tip injection increases the high pressure compressor stability margin substantially during critical maneuvers. The proposed concept in combination with an adequate control logic offers promising benefits at transient operation, leading to an improvement potential for the overall engine performance.

1.
Epstein
,
A. H.
, 1986, “
Smart Engine Components: A Micro in Every Blade?
,”
Aerosp. Am.
,
24
(
1
), pp.
60
64
. 0740-722X
2.
Jaw
,
L. C.
,
Mink
,
G.
, and
Kallappa
,
P.
, 2003, “
Intelligent Engine Technology Study
,” ISABE Paper No. ISABE-2003-1186.
3.
Paduano
,
J. D.
, and
Epstein
,
A. H.
, 2000, “
Compressor Stability and Control: Review and Practical Implications
,”
Proceedings of the RTO AVT Symposium 51 on Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles
, Braunschweig, Germany.
4.
Kefalakis
,
M.
, and
Papailiou
,
K. D.
, 2006, “
Active Flow Control for Increasing the Surge Margin of an Axial Flow Compressor
,” ASME Paper No. GT2006-90113.
5.
Freeman
,
C.
,
Wilson
,
A. G.
,
Day
,
I. J.
, and
Swinbanks
,
M. A.
, 1998, “
Experiments in Active Control of Stall on an Aeroengine Gas Turbine
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
637
647
.
6.
Nelson
,
E. B.
,
Paduano
,
J. D.
, and
Epstein
,
A. H.
, 2000, “
Active Stabilization of Surge in an Axicentrifugal Turboshaft Engine
,”
ASME J. Turbomach.
0889-504X,
122
, pp.
485
493
.
7.
Leinhos
,
D. C.
, 2003, “
Aktive Stabilisierung der Verdichterströmung in einem Zweikreis-Turbostrahltriebwerk
,” Ph.D. thesis, University of Armed Forces Munich, Germany.
8.
Scheidler
,
G. S.
, 2005, “
Untersuchung der Systemaspekte Stabilitätsverbessernder Maßnahmen in Gasturbinen
,” Ph.D. thesis, University of Armed Forces Munich, Germany.
9.
Kurzke
,
J.
, 2006, “
Effects of Inlet Flow Distortion on the Performance of Aircraft Gas Turbines
,” ASME Paper No. GT2006-90419.
10.
Deppe
,
A.
,
Saathoff
,
H.
, and
Stark
,
U.
, 2005, “
Spike-Type Stall Inception in Axial Flow Compressors
,”
Proceedings of the Sixth Conference on Turbomachinery, Fluid Dynamics and Thermodynamics
, Lille, France.
11.
Chen
,
J.
,
Webster
,
R. S.
,
Skoch
,
G. J.
,
Herrick
,
G. P.
, and
Hathaway
,
M. D.
, 2005, “
Technology for Stabilizing the Compression System of a US Army Helicopter Gas Turbine Engine: Validation of Unsteady Simulations
,”
Proceedings of the American Helicopter Society 61st Annual Forum
, Grapevine.
12.
Vo
,
H. D.
,
Tan
,
C. S.
, and
Greitzer
,
E. M.
, 2005, “
Criteria for Spike Initiated Rotating Stall
,” ASME Paper No. GT2005-68374.
13.
Weigl
,
H. J.
,
Paduano
,
J. D.
,
Fréchette
,
A. G.
,
Epstein
,
A. H.
,
Greitzer
,
E. M.
,
Bright
,
M. M.
, and
Strazisar
,
A. J.
, 1998, “
Active Stabilization of Rotating Stall in a Transonic Single Stage Axial Compressor
,”
ASME J. Turbomach.
0889-504X,
120
, pp.
625
636
.
14.
Suder
,
K. L.
,
Hathaway
,
M. D.
,
Thorp
,
S. A.
,
Strazisar
,
A. J.
, and
Bright
,
M. M.
, 2001, “
Compressor Stability Enhancement Using Discrete Tip Injection
,”
ASME J. Turbomach.
0889-504X,
123
, pp.
14
23
.
15.
Strazisar
,
A. J.
,
Bright
,
M. M.
,
Thorp
,
S. A.
,
Culley
,
D. E.
, and
Suder
,
K. L.
, 2004, “
Compressor Stall Control Through Endwall Recirculation
,” ASME Paper No. GT2004-54295.
16.
Lei
,
V.-M.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
, 2006, “
A Criterion for Axial Compressor Hub-Corner Stall
,” ASME Paper No. GT2006-91332.
17.
Kurzke
,
J.
, 1992, “
Calculation of Installation Effects Within Performance Computer Programs
,” Paper No. AGARD-LS-183.
18.
Vo
,
H. D.
, and
Paduano
,
J. D.
, 1998, “
Experimental Development of a Jet Injection Model for Rotating Stall Control
,” ASME Paper No. 98-GT-308.
19.
Bolívar
,
M.
,
Jiménez
,
A.
,
Pérez
,
C.
,
Breuer
,
T.
,
Riegler
,
C.
, and
Salchow
,
K.
, 2003, “
Advanced Propulsion System Simulation Model for a Modern Fighter Aircraft Training Aid
,”
Proceedings of the AIAA Modeling and Simulation Technologies Conference
, Paper No. AIAA-2003-5374.
20.
Kopetsch
,
T.
, 2006, “
Untersuchung des Betriebsverhaltens eines zivilen Turbofantriebwerks mit geregelter Umblasung im Verdichter
,” MS thesis, Technical University Berlin, Germany.
21.
Peitsch
,
D.
,
Fiola
,
R.
,
Brodmuehler
,
R.
, and
Nielsen
,
A.
, 1999, “
Validation of the Booster Bleed Valve Control Logic in the New BR715 Jet Engine
,” ASME Paper No. 99-GT-60.
You do not currently have access to this content.