Gas turbine components subjected to high temperatures can benefit from improved designs enabled by metal additive manufacturing (AM) with nickel alloys. Previous studies have shown that the impact on fluid flow and heat transfer resulting from surface roughness of additively manufactured parts is significant; these impacts must be understood to design turbine components successfully for AM. This study improves understanding of these impacts by examining the discharge coefficient and the effect of the coolant delivery direction on the performance of additively manufactured shaped film cooling holes. To accomplish this, five test coupons containing a row of baseline shaped film cooling holes were made from a high-temperature nickel alloy using a laser powder bed fusion (L-PBF) process. Flow and pressure drop measurements across the holes were collected to determine the discharge coefficient from the film cooling holes. Temperature measurements were collected to assess the overall effectiveness of the coupon surface as well as the cooling enhancement due to film cooling. The Biot number of the coupon wall was matched to a value one might find in a turbine engine to ensure this data is relevant. It was discovered that the flow experienced greater aerodynamic losses in film cooling holes with greater relative roughness, which resulted in a decreased discharge coefficient. The effectiveness measurements showed that the film cooling performance is better when coolant is fed in a co-flow configuration compared to a counter-flow configuration.

References

1.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
.
2.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
.
3.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
.
4.
Kirsch
,
K. L.
, and
Thole
,
K. A.
,
2016
, “
Heat Transfer and Pressure Loss Measurements in Additively Manufactured Wavy Microchannels
,”
ASME J. Turbomach.
,
139
(
1
), p.
011007
.
5.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Effectiveness Measurements of Additively Manufactured Film Cooling Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011009
.
6.
Thole
,
K. A.
,
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1997
, “
Effect of a Crossflow at the Entrance to a Film-Cooling Hole
,”
ASME J. Fluids Eng.
,
119
(
3
), pp.
533
540
.
7.
Kohli
,
A.
, and
Thole
,
K. A.
,
1997
, “
A CFD Investigation of the Effect of Entrance Flow Conditions in Discrete Film Cooling Holes
,”
32nd National Heat Transfer Conference
, Baltimore, MD, Aug. 8–12, pp.
223
232
.
8.
Hale
,
C. A.
,
Plesniak
,
M. W.
, and
Ramadhyani
,
S.
,
1999
, “
Film Cooling Effectiveness for Short Film Cooling Holes Fed by a Narrow Plenum
,”
ASME J. Turbomach.
,
122
(
3
), pp.
553
557
.
9.
Wilkes
,
E.
,
Anderson
,
J.
,
McClintic
,
J.
, and
Bogard
,
D.
,
2016
, “
An Investigation of Turbine Film Cooling Effectiveness With Shaped Holes and Internal Cross-Flow With Varying Operational Parameters
,”
ASME
Paper No.
GT2016-56162.
10.
Burd
,
S. W.
, and
Simon
,
T. W.
,
1997
, “
The Influence of Coolant Supply Geometry on Film Coolant Exit Flow and Surface Adiabatic Effectiveness
,”
ASME
Paper No.
97-GT-025.
11.
Peng
,
W.
, and
Jiang
,
P.-X.
,
2012
, “
Experimental and Numerical Study of Film Cooling With Internal Coolant Cross-Flow Effects
,”
Exp. Heat Transfer
,
25
(
4
), pp.
282
300
.
12.
Saumweber
,
C.
,
Schulz
,
A.
,
Wittig
,
S.
, and
Gritsch
,
M.
,
2001
, “
Effects of Entrance Crossflow Directions to Film Cooling Holes
,”
Ann. N. Y. Acad. Sci.
,
934
(
1
), pp.
401
408
.
13.
McClintic
,
J. W.
,
Klavetter
,
S. R.
,
Winka
,
J. R.
,
Anderson
,
J. B.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2015
, “
The Effect of Internal Crossflow on the Adiabatic Effectiveness of Compound Angle Film Cooling Holes
,”
ASME J. Turbomach.
,
137
(
7
), p.
071006
.
14.
Klavetter
,
S. R.
,
McClintic
,
J. W.
,
Bogard
,
D. G.
,
Dees
,
J. E.
,
Laskowski
,
G. M.
, and
Briggs
,
R.
,
2016
, “
The Effect of Rib Turbulators on Film Cooling Effectiveness of round Compound Angle Holes Fed by an Internal Cross-Flow
,”
ASME J. Turbomach.
,
138
(
12
), p.
121006
.
15.
Sakai
,
E.
, and
Takahashi
,
T.
,
2011
, “
Experimental and Numerical Study on Effects of Turbulence Promoters on Flat Plate Film Cooling
,”
ASME
Paper No. GT2011-45196
.
16.
Agata
,
Y.
,
Takahashi
,
T.
,
Sakai
,
E.
, and
Nishino
,
K.
,
2012
, “
Effects of Turbulence Promoters of Gas Turbine Blades on Film Cooling Performance
,”
J. Therm. Sci. Technol.
,
7
(
4
), pp.
603
618
.
17.
Agata
,
Y.
,
Takahashi
,
T.
,
Sakai
,
E.
, and
Nishino
,
K.
,
2013
, “
Effect of Orientation of Internal Turbulence Promoting Ribs on Flow Characteristics for Film Cooling
,”
J. Therm. Sci. Technol.
,
8
(
1
), pp.
15
27
.
18.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2016
, “
Effect of in-Hole Roughness on Film Cooling From a Shaped Hole
,”
ASME J. Turbomach.
,
139
(
3
), p.
031004
.
19.
Vinton
,
K. R.
,
Nahang-Toudeshki
,
S.
,
Wright
,
L. M.
, and
Carter
,
A.
,
2016
, “
Full Coverage Film Cooling Performance for Combustor Cooling Manufactured Using DMLS
,”
ASME
Paper No. GT2016-56504
.
20.
Jackowski
,
T.
,
Schulz
,
A.
,
Bauer
,
H.-J.
,
Gerendás
,
M.
, and
Behrendt
,
T.
,
2016
, “
Effusion Cooled Combustor Liner Tiles With Modern Cooling Concepts: A Comparative Experimental Study
,”
ASME
Paper No. GT2016-56598
.
21.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2014
, “
Adiabatic Effectiveness Measurements for a Baseline Shaped Film Cooling Hole
,”
ASME
Paper No. GT2014-25992
.
22.
EOS GmbH
,
2014
, “
Material Data Sheet: EOS NickelAlloy HX
,”
EOS GmbH
,
Munchen, Germany
.
23.
EOS GmbH
,
2011
,
Basic Training EOSINT M 280
,
EOS GmbH
,
Munchen, Germany
.
24.
Reinhart
,
C.
,
2011
,
Industrial CT & Precision
,
Volume Graphics GmbH
,
Heidelberg, Germany
.
25.
Kays
,
W.
,
Crawford
,
M.
, and
Weigand
,
B.
,
2004
,
Convective Heat & Mass Transfer
,
McGraw-Hill
,
Boston, MA
.
26.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
2000
, “
Film-Cooling Holes With Expanded Exits: Near-Hole Heat Transfer Coefficients
,”
Int. J. Heat Fluid Flow
,
21
(
2
), pp.
146
155
.
27.
Gritsch
,
M.
,
Schulz
,
A.
, and
Wittig
,
S.
,
1998
, “
Discharge Coefficient Measurements of Film-Cooling Holes With Expanded Exits
,”
ASME J. Turbomach.
,
120
(
3
), pp.
557
563
.
28.
Albert
,
J. E.
,
Bogard
,
D. G.
, and
Cunha
,
F.
,
2004
, “
Adiabatic and Overall Effectiveness for a Film Cooled Blade
,”
ASME
Paper No.
GT2004-53998.
29.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2005
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken, NJ
.
30.
Whitfield
,
C. A.
,
Schroeder
,
R. P.
,
Thole
,
K. A.
, and
Lewis
,
S. D.
,
2015
, “
Blockage Effects From Simulated Thermal Barrier Coatings for Cylindrical and Shaped Cooling Holes
,”
ASME J. Turbomach.
,
137
(
9
), p.
091004
.
You do not currently have access to this content.