Abstract

In the present work, we report on an experimental study of bending/flap mode flutter of a blade within a linear cascade at transonic conditions. Driven by the motivation to understand the contribution of shock location/dynamics to flutter characteristics, we have performed simultaneous measurements of shock dynamics using high-speed shadowgraphy combined with unsteady load measurements on an oscillating blade within the cascade. The flutter characteristics in terms of energy transfer from the fluid to the blade and shock dynamics have been mapped out over a range of blade oscillation frequencies and static pressure ratios (SPRs) across the cascade, the latter being important as they decide the mean location of the passage shocks. SPR values studied include both conditions where the shock is within the passage (started cascade) and where the passage shock is pushed ahead of the leading edge of the blades (unstarted cascade). These measurements show characteristically different flutter behavior for an unstarted cascade compared with a started cascade, the former having received very little attention in the literature. While both these cases show small excitation levels at low reduced frequencies, the unstarted cascade case exhibits an additional relative narrow region of excitation at higher reduced frequencies with approximately an order of magnitude higher excitation energies. Comparison of the shock dynamics between the two excitation regimes shows significant differences in the phase of the leading edge shock in addition to changes in the suction side shock phase indicating that the two excitation regimes are of different origin.

References

1.
Platzer
,
M. F.
, and
Carta
,
F. O.
,
1987
, “
Agard Manual on Aeroelasticity in Axial-Flow Turbomachines. Volume 1. Unsteady Turbomachinery Aerodynamics
,” Tech. Rep.,
Advisory Group for Aerospace Research and Development
,
Neuilly-Sur-Seine, France
.
2.
Marshall
,
J.
, and
Imregun
,
M.
,
1996
, “
A Review of Aeroelasticity Methods With Emphasis on Turbomachinery Applications
,”
J. Fluids Struct.
,
10
(
3
), pp.
237
267
. 10.1006/jfls.1996.0015
3.
Srinivasan
,
A.
,
1997
, “
Flutter and Resonant Vibration Characteristics of Engine Blades
,”
ASME J. Eng. Gas Turbines Power
,
119
(
4
), pp.
742
775
. 10.1115/1.2817053
4.
Lubomski
,
J. F.
,
1980
, “
Status of NASA Full-Scale Engine Aeroelasticity Research
,” NASA Technical Memorandum 81500.
5.
Vahdati
,
M.
,
Smith
,
N.
, and
Zhao
,
F.
,
2015
, “
Influence of Intake on Fan Blade Flutter
,”
ASME J. Turbomach.
,
137
(
8
), p.
081002
. 10.1115/1.4029240
6.
Isomura
,
K.
, and
Giles
,
M. B.
,
1998
, “
A Numerical Study of Flutter in a Transonic Fan
,”
ASME J. Turbomach.
,
120
(
3
), pp.
500
507
. 10.1115/1.2841746
7.
Chuang
,
H. A.
, and
Verdon
,
J. M.
,
1999
, “
A Nonlinear Numerical Simulator for Three-Dimensional Flows Through Vibrating Blade Rows
,”
ASME J. Turbomach.
,
121
(
2
), pp.
348
357
. 10.1115/1.2841321
8.
Goldstein
,
M.
,
Braun
,
W.
, and
Adamczyk
,
J.
,
1977
, “
Unsteady Flow in a Supersonic Cascade With Strong In-Passage Shocks
,”
J. Fluid Mech.
,
83
(
3
), pp.
569
604
. 10.1017/S0022112077001347
9.
Adamczyk
,
J.
,
Stevans
,
W.
, and
Jutras
,
R.
,
1982
, “
Supersonic Stall Flutter of High-Speed Fans
,”
J. Eng. Power
,
104
(
3
), pp.
675
682
. 10.1115/1.3227331
10.
Kobayashi
,
H.
,
1990
, “
Annular Cascade Study of Low Back-Pressure Supersonic Fan Blade Flutter
,”
ASME J. Turbomach.
,
112
(
4
), pp.
768
777
. 10.1115/1.2927720
11.
Vogt
,
D. M.
, and
Fransson
,
T. H.
,
2007
, “
Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions
,”
ASME J. Eng. Gas Turbines Power
,
129
(
2
), pp.
530
541
. 10.1115/1.2436567
12.
Keerthi
,
M.
, and
Kushari
,
A.
,
2019
, “
Experimental Study of Aerodynamic Damping of an Annular Compressor Cascade With Large Mean Incidences
,”
ASME J. Turbomach.
,
141
(
6
), p.
061002
. 10.1115/1.4042214
13.
Belz
,
J.
, and
Hennings
,
H.
,
2006
, “
Experimental Flutter Investigations of an Annular Compressor Cascade: Influence of Reduced Frequency on Stability
,”
Proceedings of the 10th International Symposium on Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of Turbomachines
,
K. C.
Hall
,
R. E.
Kielb
, and
J. P.
Thomas
, eds., Duke University in Durham,
Durham, NC
,
Sept. 8–11, 2003
, Springer, Dordrecht, pp.
77
91
.
14.
McBean
,
I.
,
Hourigan
,
K.
,
Thompson
,
M.
, and
Liu
,
F.
,
2005
, “
Prediction of Flutter of Turbine Blades in a Transonic Annular Cascade
,”
J. Fluids Eng.
,
127
(
6
), pp.
1053
1058
. 10.1115/1.2060731
15.
Doi
,
H.
, and
Kaji
,
S.
,
1995
, “
Analysis of Unstarted Supersonic Flutter in Cascade by Semiactuator Disk Theory
,”
JSME Int. J. Ser. B Fluids Therm. Eng.
,
38
(
3
), pp.
411
418
. 10.1299/jsmeb.38.411
16.
Buffum
,
D. H.
,
Capece
,
V. R.
,
King
,
A. J.
, and
El-Aini
,
Y. M.
,
1998
, “
Oscillating Cascade Aerodynamics at Large Mean Incidence
,”
ASME J. Turbomach.
,
120
(
1
), pp.
122
130
. 10.1115/1.2841373
17.
Yang
,
H.
, and
He
,
L.
,
2004
, “
Experimental Study on Linear Compressor Cascade With Three-dimensional Blade Oscillation
,”
J. Propul. Power
,
20
(
1
), pp.
180
188
. 10.2514/1.1280
18.
Verdon
,
J. M.
, and
Caspar
,
J. R.
,
1984
, “
A Linearized Unsteady Aerodynamic Analysis for Transonic Cascades
,”
J. Fluid Mech.
,
149
, pp.
403
429
. 10.1017/S002211208400272X
19.
Bendiksen
,
O.
,
1986
, “
Role of Shocks in Transonic/Supersonic Compressor Rotor Flutter
,”
AIAA J.
,
24
(
7
), pp.
1179
1186
. 10.2514/3.9411
20.
Fransson
,
T.
, and
Verdon
,
J.
,
1992
, “
Updated Report on Standard Configurations for Unsteady Flow Through Vibrating Axial-Flow Turbomachine Cascades: Status as of July 1991
,”
Royal Institute of Technology
,
Stockholm, Sweden
and United Technologies Research Center, East Hartford, CT, Report. http://www.egi.kth.se/proj/Projects/Markus%20joecker/STCF/STCF1to10/Documents/SC2110.92update.pdf
21.
Watanabe
,
T.
,
Azuma
,
T.
,
Uzawa
,
S.
,
Himeno
,
T.
, and
Inoue
,
C.
,
2018
, “
Unsteady Pressure Measurement on Oscillating Blade in Transonic Flow Using Fast-Response Pressure-Sensitive Paint
,”
ASME J. Turbomach.
,
140
(
6
), p.
061003
. 10.1115/1.4039180
22.
Panovsky
,
J.
, and
Kielb
,
R. E.
,
1999
, “
A Design Method to Prevent Low Pressure Turbine Blade Flutter
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
89
98
. 10.1115/1.483180
23.
Riffel
,
R.
, and
Rothrock
,
M.
,
1980
, “
Experimental Determination of Unsteady Blade Element Aerodynamics in Cascades. Volume 2: Translation Mode Cascade
,” Final Report, NASA-CR-165166.
24.
Messenger
,
H.
,
1972
, “
Two Stage Fan. 1: Aerodynamic and Mechanical Design
,” NASA-CR-120859.
25.
Goethert
,
B. H.
,
2007
,
Transonic Wind Tunnel Testing
, 1961 ed.,
Dover Publications, Reprint of the Pergamon Press
,
New York
.
26.
Carta
,
F.
,
1982
, “
An Experimental Investigation of Gapwise Periodicity and Unsteady Aerodynamic Response in an Oscillating Cascade. 1: Experimental and Theoretical Results [Turbine Blades]
,” NASA CR 3513.
27.
Lichtfuss
,
H.-J.
, and
Starken
,
H.
,
1970
, “
Supersonic Cascade Performance
,” AGARD LS 39.
28.
Tweedt
,
D. L.
,
Schreiber
,
H.
, and
Starken
,
H.
,
1988
, “
Experimental Investigation of the Performance of a Supersonic Compressor Cascade
,”
ASME J. Turbomach.
,
110
(
4
), pp.
456
466
. 10.1115/1.3262219
29.
Shibata
,
T.
, and
Kaji
,
S.
,
1998
, “
Role of Shock Structures in Transonic Fan Rotor Flutter
,”
Proceedings of the 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines
,
Stockholm, Sweden
,
Sept. 14–18, 1997
,
Springer
,
Dordrecht
, pp.
733
747
.
30.
Schreiber
,
H.
, and
Starken
,
H.
,
1992
, “
An Investigation of a Strong Shock-Wave Turbulent Boundary Layer Interaction in a Supersonic Compressor Cascade
,”
ASME J. Turbomach.
,
114
(
3
), pp.
494
503
. 10.1115/1.2929170
31.
Vahdati
,
M.
,
Sayma
,
A.
,
Marshall
,
J.
, and
Imregun
,
M.
,
2011
, “
Mechanisms and Prediction Methods for Fan Blade Stall Flutter
,”
J. Propul. Power
,
17
(
5
), pp.
1100
1108
.
32.
Vahdati
,
M.
, and
Cumpsty
,
N.
,
2016
, “
Aeroelastic Instability in Transonic Fans
,”
ASME J. Eng. Gas Turbines Power
,
138
(
2
), p.
022604
. 10.1115/1.4031225
33.
Robinet
,
J.-C.
, and
Casalis
,
G.
,
2001
, “
Critical Interaction of a Shock Wave With an Acoustic Wave
,”
Phys. Fluids
,
13
(
4
), pp.
1047
1059
. 10.1063/1.1351548
34.
Lee
,
B.
,
2001
, “
Self-Sustained Shock Oscillations on Airfoils at Transonic Speeds
,”
Prog. Aerosp. Sci.
,
37
(
2
), pp.
147
196
. 10.1016/S0376-0421(01)00003-3
35.
Erickson
,
A. L.
, and
Stephenson
,
J. D.
,
1947
, “
A Suggested Method of Analyzing for Transonic Flutter of Control Surfaces Based on Available Experimental Evidence
,” NACA RM A7F30,
National Advisory Committee for Aeronautics
.
You do not currently have access to this content.