Abstract

The use of additive manufacturing (AM) processes, such as direct metal laser sintering, provides the design freedom required to incorporate complex cooling schemes in gas turbine components. Additively manufactured turbine components have a range of cooling feature sizes and, because of the inherent three-dimensionality, a wide range of build angles. Previous studies have shown that AM built directions influence internal channel surface roughness that, in turn, augment heat transfer and pressure loss. This study investigates the impact of AM on channel feature size and builds direction relative to tolerance, surface roughness, pressure losses, and convective cooling. Multiple AM coupons were built from Inconel 718 consisting of channels with different diameters and a variety of build directions. An experimental rig was used to measure pressure drop to calculate friction factor and was used to impose a constant surface temperature boundary condition to collect Nusselt number over a range of Reynolds numbers. Significant variations in surface roughness and geometric deviations from the design intent were observed for distinct build directions and channel sizes. These differences led to notable impacts in friction factor and Nusselt number augmentations, which were a strong function of build angle.

References

1.
Ventola
,
L.
,
Robotti
,
F.
,
Dialameh
,
M.
,
Calignano
,
F.
,
Manfredi
,
D.
,
Chiavazzo
,
E.
, and
Asinari
,
P.
,
2014
, “
Rough Surfaces With Enhanced Heat Transfer for Electronics Cooling by Direct Metal Laser Sintering
,”
Int. J. Heat Mass Transfer
,
75
, pp.
58
74
. 10.1016/j.ijheatmasstransfer.2014.03.037
2.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Build Direction Effects on Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051006
. 10.1115/1.4032168
3.
Morel
,
C.
,
Cioca
,
V. V.
,
Lavernhe
,
S.
,
Jardini
,
A. L.
, and
Conte
,
E.
,
2018
, “
Part Surface Roughness on Laser Sintering and Milling of Maraging Steel 300
,”
14th International Conference on High Speed Manufacturing
,
San-Sebastian, Spain
,
Apr. 21
, pp.
3
6
.
4.
Pakkanen
,
J.
,
Calignano
,
F.
,
Trevisan
,
F.
,
Lorusso
,
M.
,
Ambrosio
,
E. P.
,
Manfredi
,
D.
, and
Fino
,
P.
,
2016
, “
Study of Internal Channel Surface Roughnesses Manufactured by Selective Laser Melting in Aluminum and Titanium Alloys
,”
Metall. Mater. Trans. A
,
47
(
8
), pp.
3837
3844
. 10.1007/s11661-016-3478-7
5.
Tian
,
Y.
,
Tomus
,
D.
,
Rometsch
,
P.
, and
Wu
,
X.
,
2017
, “
Influences of Processing Parameters on Surface Roughness of Hastelloy X Produced by Selective Laser Melting
,”
Addit. Manuf.
,
13
, pp.
103
112
. https://doi.org/10.1016/j.addma.2016.10.010
6.
Kleszczynski
,
S.
,
Ladewig
,
A.
,
Friedberger
,
K.
,
Zur Jacobsmuhlen
,
J.
,
Merhof
,
D.
, and
Witt
,
G.
,
2015
, “
Position Dependency of Surface Roughness in Parts From Laser Beam
,”
26th International Solid Free Form Fabrication (SFF) Symposium.
,
Austin, TX
,
Aug. 10–12
, pp.
360
370
.
7.
Chen
,
Z.
,
Wu
,
X.
,
Tomus
,
D.
, and
Davies
,
C. H. J.
,
2018
, “
Surface Roughness of Selective Laser Melted Ti-6Al-4V Alloy Components
,”
Addit. Manuf.
,
21
, pp.
91
103
. https://doi.org/10.1016/j.addma.2018.02.009
8.
Klingaa
,
C. G.
,
Bjerre
,
M. K.
,
Baier
,
S.
,
De Chiffre
,
L.
,
Mohanty
,
S.
, and
Hattel
,
J. H.
,
2019
, “
Roughness Investigation of SLM Manufactured Conformal Cooling Channels Using X-Ray Computed Tomography
,”
9th Conference on Industrial Computer Tomography.
,
Padova, Italy
,
Feb. 13–15
.
9.
Mingear
,
J.
,
Zhang
,
B.
,
Hartl
,
D.
, and
Elwany
,
A.
,
2019
, “
Effect of Process Parameters and Electropolishing on the Surface Roughness of Interior Channels in Additively Manufactured Nickel-Titanium Shape Memory Alloy Actuators
,”
Addit. Manuf.
,
27
, pp.
565
575
. https://doi.org/10.1016/j.addma.2019.03.027
10.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2017
, “
Scaling Roughness Effects on Pressure Loss and Heat Transfer of Additively Manufactured Channels
,”
ASME J. Turbomach.
,
139
(
2
), p.
021003
. 10.1115/1.4034555
11.
Snyder
,
J. C.
,
Stimpson
,
C. K.
,
Thole
,
K. A.
, and
Mongillo
,
D. J.
,
2015
, “
Build Direction Effects on Microchannel Tolerance and Surface Roughness
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111411
. https://doi.org/10.1115/1.4031071
12.
Kamat
,
A. M.
, and
Pei
,
Y.
,
2019
, “
An Analytical Method to Predict and Compensate for Residual Stress-Induced Deformation in Overhanging Regions of Internal Channels Fabricated Using Powder Bed Fusion
,”
Addit. Manuf.
,
29
, p.
100796
. https://doi.org/10.1016/j.addma.2019.100796
13.
Parbat
,
S. N.
,
Yang
,
L.
,
Min
,
Z.
, and
Chyu
,
M. K.
,
2019
, “
Experimental and Numerical Analysis of Additively Manufactured Coupons With Parallel Channels and Inline Wall Jets
,”
ASME J. Turbomach.
,
141
(
6
), p.
061004
. https://doi.org/10.1115/1.4041821
14.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2016
, “
Roughness Effects on Flow and Heat Transfer for Additively Manufactured Channels
,”
ASME J. Turbomach.
,
138
(
5
), p.
051008
. https://doi.org/10.1115/1.4032167
15.
EOS
,
2011
,
Basic Training EOSINT M280
,
Electro Optical Systems GmbH
,
Munich
.
16.
Snyder
,
J. C.
,
2019
, “
Improving Turbine Cooling Through Control of Surface Roughness in the Additive Manufacturing Process
,”
Ph.D. thesis, The Pennsylvania State University, State College, PA
.
17.
Fox
,
J. C.
,
Moylan
,
S. P.
, and
Lane
,
B. M.
,
2016
, “
Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing
,”
Procedia CIRP
,
45
, pp.
131
134
. 10.1016/j.procir.2016.02.347
18.
Calignano
,
F.
,
Manfredi
,
D.
,
Ambrosio
,
E. P.
,
Iuliano
,
L.
, and
Fino
,
P.
,
2013
, “
Influence of Process Parameters on Surface Roughness of Aluminum Parts Produced by DMLS
,”
Int. J. Adv. Manuf. Technol.
,
67
(
9–12
), pp.
2743
2751
. 10.1007/s00170-012-4688-9
19.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2019
, “
Effect of Additive Manufacturing Process Parameters on Turbine Cooling
,”
ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition.
,
Phoenix, AZ
,
June 17–29
.
20.
Reinhart
,
C.
,
2011
, “Industrial CT & Precision,”
Volume Graphics GmbH
,
Heidelberg
.
21.
Stimpson
,
C. K.
,
Snyder
,
J. C.
,
Thole
,
K. A.
, and
Mongillo
,
D.
,
2018
, “
Effectiveness Measurements of Additively Manufactured Film Cooling Holes
,”
ASME J. Turbomach.
,
140
(
1
), p.
011009
. https://doi.org/10.1115/1.4038182
22.
Ealy
,
B.
,
Calderon
,
L.
,
Wang
,
W.
,
Valentin
,
R.
,
Mingareev
,
I.
,
Richardson
,
M.
, and
Kapat
,
J.
,
2017
, “
Characterization of Laser Additive Manufacturing-Fabricated Porous Superalloys for Turbine Components
,”
ASME J. Eng. Gas Turbines Power
,
139
(
10
), p.
102102
. https://doi.org/10.1115/1.4035560
23.
Munson
,
R. B.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
1990
,
Fundamentals of Fluid Mechanics
,
Wiley & Sons
,
Hoboken, NJ
.
24.
Sweet
,
J. N.
,
Roth
,
E. P.
, and
Moss
,
M.
,
1987
, “
Thermal Conductivity of Inconel 718 and 304 Stainless Steel
,”
Int. J. Thermophys.
,
8
(
5
), pp.
593
606
. 10.1007/BF00503645
25.
Figliola
,
R. S.
, and
Beasley
,
D. E.
,
2005
,
Theory and Design for Mechanical Measurements
,
Wiley
,
Hoboken, NJ
.
26.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
368
.
You do not currently have access to this content.