Abstract

Compressor fouling is still an unforeseen phenomenon. Gas turbines for heavy-duty and propulsion applications are subject to performance degradation due to fouling, erosion, and corrosion mechanisms. Unlike the last two, the fouling phenomenon is recoverable depending on weather, operating conditions, and operator actions. It is generated by the adhesion of micro-sized particles on the relevant surfaces, generating blade shape and surface roughness variations. Fouling could affect the machine performance differently. The interaction between machine characteristics, airborne contaminants, and environmental conditions determines fouling prediction challenges. An experimental campaign has been carried out in the present analysis to study the overtime modification of compressor performance and mass deposits on the blade and vane surfaces. The axial unit has been operated to control the performance and deposition process by keeping the contamination and the relative humidity constant during the time. The test matrix has been based on two relative humidity values and four exposure time intervals. The results have shown the action of the competitive phenomena as adhesion and detachment, generating a non-linear trend of the deposited mass−time relation depending on impact characteristics and humidity values. Compressor performance follows similar behavior and shows a non-linear trend instead of constant contamination. Data interpretation and generalization are reported to increase the possibility of better predicting the effects of particle adhesion on gas turbine performance degradation.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Kurz
,
R.
, and
Brun
,
K.
,
2012
, “
Fouling Mechanisms in Axial Compressors
,”
ASME J. Eng. Gas Turbines Power
,
134
(
3
), p.
032401
.
2.
Diakunchak
,
I. S.
,
1992
, “
Performance Deterioration in Industrial Gas Turbines
,”
ASME J. Eng. Gas Turbines Power
,
114
(
2
), pp.
161
168
.
3.
Stalder
,
J.-P.
,
2001
, “
Gas Turbine Compressor Washing State of the Art: Field Experiences
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
363
370
.
4.
Perullo
,
C. A.
,
Lieuwen
,
T.
,
Barron
,
J.
,
Grace
,
D.
, and
Angello
,
L.
,
2015
, “
Evaluation of Air Filtration Options for an Industrial Gas Turbine
,”
Proceedings of the ASME Turbo Expo
,
Montreal, Quebec, Canada
,
June 15–19
.
5.
Tayebi
,
K.-A.
,
Sumith
,
N.
,
Jupudi
,
M. M.
,
Dawood
,
A.
, and
Khalidi
,
A.
,
2023
, “
Sand Ingress in Gas Turbines Operating in Desert Environments: Observations and CFD Simulations
,”
Proceedings of the ASME Turbo Expo
,
Boston, MA
,
June 26–30
.
6.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Analysis of Time-Wise Compressor Fouling Phenomenon on a Multistage Test Compressor: Performance Losses and Particle Adhesion
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081005
.
7.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Kurz
,
R.
, and
Brun
,
K.
,
2021
, “
Deposition Pattern Analysis on a Fouled Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
8
), p.
081006
.
8.
Suman
,
A.
,
Vulpio
,
A.
,
Fortini
,
A.
,
Fabbri
,
E.
,
Casari
,
N.
,
Merlin
,
M.
, and
Pinelli
,
M.
,
2021
, “
Experimental Analysis of Micro-Sized Particles Time-Wise Adhesion: The Influence of Impact Velocity and Surface Roughness
,”
Int. J. Heat Mass Transfer
,
165
(
A
), p.
120632
.
9.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
di Lillo
,
F.
, and
D'Amico
,
L.
,
2021
, “
Analysis of Soil and Soot Deposits by X-ray Computed Microtomography
,”
Powder Technol.
,
394
, pp.
608
621
.
10.
Suman
,
A.
,
Vulpio
,
A.
,
Pinelli
,
M.
, and
D'Amico
,
L.
,
2022
, “
Microtomography of Soil and Soot Deposits: Analysis of Three-Dimensional Structures and Surface Morphology
,”
ASME J. Eng. Gas Turbines Power
,
144
(
10
), p.
101010
.
11.
Suman
,
A.
,
Morini
,
M.
,
Aldi
,
N.
,
Casari
,
N.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2017
, “
A Compressor Fouling Review Based on an Historical Survey of ASME Turbo Expo Papers
,”
ASME J. Turbomach.
,
139
(
4
), p.
041005
.
12.
Friso
,
R.
,
Suman
,
A.
,
Vulpio
,
A.
,
Zanini
,
N.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2023
, “
Towards an Innovative Mechanistic Model to Predict the Detachment Process of a Deposited Layer
,”
Int. J. Heat Mass Transfer
,
200
(
1
), p.
123525
.
13.
Meher-Homji
,
C. B.
,
Chaker
,
M.
, and
Bromley
,
A. F.
,
2009
, “
The Fouling of Axial Flow Compressors – Causes, Effects, Susceptibility and Sensitivity
,”
Proceedings of the ASME Turbo Expo
,
Orlando, FL
,
June 8–12
, Vol. 4, pp.
571
590
.
14.
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
, and
Venturini
,
M.
,
2011
, “
Numerical Analysis of the Effects of Non-Uniform Surface Roughness on Compressor Stage Performance
,”
ASME J. Eng. Gas Turbines Power
,
133
(
7
), p.
072402
.
15.
Aldi
,
N.
,
Morini
,
M.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Venturini
,
M.
,
2013
, “
Performance Evaluation of Nonuniformly Fouled Axial Compressor Stages by Means of Computational Fluid Dynamics Analyses
,”
ASME J. Turbomach.
,
136
(
2
), p.
021016
.
16.
Syverud
,
E.
,
Brekke
,
O.
, and
Bakken
,
L. E.
,
2007
, “
Axial Compressor Deterioration Caused by Saltwater Ingestion
,”
ASME J. Turbomach.
,
129
(
1
), pp.
119
126
.
17.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2021
, “
Dust Ingestion in a Rotorcraft Engine Compressor: Experimental and Numerical Study of the Fouling Rate
,”
Aerospace
,
8
(
3
), p.
81
.
18.
Shi
,
L.
,
Guo
,
S.
,
Yu
,
P.
,
Zhang
,
X.
, and
Xiong
,
J.
,
2023
, “
A Review on Leading-Edge Erosion Morphology and Performance Degradation of Aero-Engine Fan and Compressor Blades
,”
Energies
,
16
(
7
), p.
3068
.
19.
Elmstrom
,
M. E.
,
Millsaps
,
K. T.
,
Hobson
,
G. V.
, and
Patterson
,
J. S.
,
2011
, “
Impact of Non-Uniform Leading Edge Coatings on the Aerodynamic Performance of Compressor Airfoils
,”
ASME J. Turbomach.
,
133
(
4
), p.
041004
.
20.
Goodhand
,
M. N.
, and
Miller
,
R. J.
,
2011
, “
Compressor Leading Edge Spikes: A New Performance Criterion
,”
ASME J. Turbomach.
,
133
(
2
), p.
021006
.
21.
Edward Mayle
,
R.
,
1991
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines
,”
ASME J. Turbomach.
,
113
(
4
), pp.
509
536
.
22.
Walker
,
G. J.
,
1993
, “
The Role of Laminar-Turbulent Transition in Gas Turbine Engines: A Discussion
,”
ASME J. Turbomach.
,
115
(
2
), pp.
207
216
.
23.
Gbadebo
,
S. A.
,
Hynes
,
T. P.
, and
Cumpsty
,
N. A.
,
2004
, “
Influence of Surface Roughness on Three-Dimensional Separation in Axial Compressors
,”
ASME J. Turbomach.
,
126
(
4
), pp.
455
463
.
24.
Gbadebo
,
S. A.
,
Cumpsty
,
N. A.
, and
Hynes
,
T. P.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
25.
Casari
,
N.
,
Pinelli
,
M.
,
Spina
,
P. R.
,
Suman
,
A.
, and
Vulpio
,
A.
,
2021
, “
Performance Degradation due to Fouling and Recovery After Washing in a Multistage Test Compressor
,”
ASME J. Eng. Gas Turbines Power
,
143
(
3
), p.
031020
.
26.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
,
Pinelli
,
M.
,
Appleby
,
C.
, and
Kyte
,
S.
,
2021
, “
Washing Effectiveness Assessment of Different Cleaners on a Small-Scale Multistage Compressor
,”
Proceedings of the ASME Turbo Expo
,
Virtual, Online
,
June 7–11
.
27.
ASME PTC 10, 1997 Edition
,
1997
,
Performance Test Code on Compressors and Exhausters
,
American Society of Mechanical Engineers
,
New York
.
28.
Standard ISO 12103-1:2016. Road vehicles – Test contaminants for filter evaluation Arizona test dust.
29.
Suman
,
A.
,
Zanini
,
N.
,
Vulpio
,
A.
, and
Pinelli
,
M.
,
2024
, “
Apparatus and Methods for the Calibration and Correction of a Polydispersed Dust Feeding System Applied in Multiphase Flow Experiments
,”
Exp. Therm. Fluid. Sci.
,
151
, p.
111074
.
30.
Suman
,
A.
,
Zanini
,
N.
, and
Pinelli
,
M.
,
2023
, “
Design of an Innovative Experimental rig for the Study of Deposition Phenomena in Axial Compressors
,”
Proceedings of the ASME Turbo Expo
,
Boston, MA
,
June 26–30
.
31.
Clarkson
,
R. J.
,
Majewicz
,
E. J. E.
, and
Mack
,
P.
,
2016
, “
A Re-Evaluation of the 2010 Quantitative Understanding of the Effects Volcanic Ash Has on Gas Turbine Engines
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
230
(
12
), pp.
2274
2291
.
32.
Suman
,
A.
,
Zanini
,
N.
, and
Pinelli
,
M.
,
2023
, “
Assessment of Airborne Contaminant Encountered During a Flight Mission
,”
Proceedings of the ASME Turbo Expo
,
Boston, Massachusetts, USA
,
June 26–30
.
33.
Jensen
,
J. W.
,
Squire
,
S. W.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2005
, “
Simulated Land-Based Turbine Deposits Generated in an Accelerated Deposition Facility
,”
ASME J. Turbomach.
,
127
(
3
), pp.
462
470
.
34.
Wammack
,
J. E.
,
Crosby
,
J.
,
Fletcher
,
D.
,
Bons
,
J. P.
, and
Fletcher
,
T. H.
,
2008
, “
Evolution of Surface Deposits on a High Pressure Turbine Blade, Part I: Physical Characteristics
,”
ASME J. Turbomach.
,
130
(
2
), p.
021020
.
35.
Corsby
,
J. M.
,
Lewis
,
S.
,
Bons
,
J. P.
,
Ai
,
W.
, and
Fletcher
,
T. H.
,
2008
, “
Effects of Temperature and Particle Size on Deposition in Land Based Turbines
,”
ASME J. Eng. Gas Turbines Power
,
130
(
5
), p.
051503
.
36.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2021
, “
Outstretching Population Growth Theory Towards Surface Contamination
,”
Powder Technol.
,
394
, pp.
597
607
.
37.
Suman
,
A.
,
Vulpio
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2022
, “
A Stochastic Model for Nanoparticle Deposits Growth
,”
ASME J. Eng. Gas Turbines Power
,
144
(
1
), p.
011022
.
38.
Allison Gas Turbine
. Operation and Maintenance manual. Turboshaft models 250-C18, A, B & C. 15 September 1971, Rev. 16 June 1975. Detroit Diesel Allison, Division of General Motors Corporation, Indianapolis.
39.
Vulpio
,
A.
,
Suman
,
A.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2022
, “
A Simplified Method for the Deposition Rate Assessment on the Vanes of a Multistage Axial-Flow Compressor
,”
ASME J. Turbomach.
,
144
(
7
), p.
71009
.
40.
Casari
,
N.
,
Fortini
,
A.
,
Pinelli
,
M.
,
Suman
,
A.
,
Vulpio
,
A.
, and
Zanini
,
N.
,
2022
, “
Measurement Approaches for the Analysis of Soil Layer by Microparticle Adhesion
,”
Meas.: J. Int. Meas. Confed.
,
187
, p.
110185
.
41.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2014
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Transonic Axial Compressor Blade-Part I: Particle Zones Impact
,”
ASME J. Turbomach.
,
137
(
2
), p.
021009
.
42.
Suman
,
A.
,
Morini
,
M.
,
Kurz
,
R.
,
Aldi
,
N.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Spina
,
P. R.
,
2015
, “
Quantitative Computational Fluid Dynamic Analyses of Particle Deposition on a Transonic Axial Compressor Blade-Part ii: Impact Kinematics and Particle Sticking Analysis
,”
ASME J. Turbomach.
,
137
(
2
), p.
021010
.
43.
Suman
,
A.
,
Kurz
,
R.
,
Aldi
,
N.
,
Morini
,
M.
,
Brun
,
K.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2016
, “
Quantitative Computational Fluid Dynamics Analyses of Particle Deposition on a Subsonic Axial Compressor Blade
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
012603
.
44.
Suder
,
K. L.
,
Chima
,
R. V.
,
Strazisar
,
A. J.
, and
Roberts
,
W. B.
,
1995
, “
The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor
,”
ASME J. Turbomach.
,
117
(
4
), pp.
491
505
.
45.
Melino
,
F.
,
Peretto
,
A.
, and
Spina
,
P. R.
,
2010
, “
Development and Validation of a Model for Axial Compressor Fouling Simulation
,”
Proceedings of the ASME Turbo Expo
,
Glasgow, UK
,
June 14–18
, Vol. 5, pp.
87
98
.
46.
Melino
,
F.
,
Morini
,
M.
,
Peretto
,
A.
,
Pinelli
,
M.
, and
Ruggero Spina
,
P.
,
2012
, “
Compressor Fouling Modeling: Relationship Between Computational Roughness and Gas Turbine Operation Time
,”
ASME J. Eng. Gas Turbines Power
,
134
(
5
), p.
052401
.
You do not currently have access to this content.