Abstract

Various internal cooling techniques combined with external film cooling are applied to cool gas turbine blades, and the coolant extraction can cause variations in internal flow structures and cooling effectiveness. Effects of film extraction under different film hole diameters and coolant mass flow ratio on heat transfer and flow characteristics of channel impingement cooling are presented using large eddy simulation (LES) in this article. The current work was undertaken based on turbine blade dimensions and turbine operating conditions. The results indicate that film extraction coupled with the curvature-induced instability dominates flow patterns and heat transfer in the channel impingement cooling structure with a film hole, especially in the bend region corresponding to the leading edge of turbine blades. Film coolant extraction can disrupt the streamwise counterrotating flow circulation pair. The latter is caused by the curvature-induced instability and is also the major driver of multilongitudinal vortices. The hole edge vortex generated by coolant bleed amplifies heat transfer at the leading edge, and the effect is more significant as the film hole diameter increases. Conversely, heat transfer coefficient downstream of the cooling channel decreases due to a reduction in cooling air. The increasing film bleed flow increases overall total pressure loss, while flow loss in the cooling channel decreases because of the weakened flow circulations and reduced coolant mass flow. This work provides an in-depth insight into the cooling performance of channel impingement cooling with film extraction, contributing to designing film cooling for turbine blades with multichannel wall jet cooling.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Luai
,
M. A.
,
Shaahid
,
S. M.
, and
Al-Mubarak
,
A. A.
,
2011
, “Jet Impingement Cooling in Gas Turbines for Improving Thermal Efficiency and Power Density,”
Advances in Gas Turbine Technology
,
E.
Benini
, ed.,
IntechOpen
,
London, UK
, pp.
191
210
.
2.
Han
,
J. C.
,
2018
, “
Advanced Cooling in Gas Turbines 2016 Max Jakob Memorial Award Paper
,”
ASME J. Heat Mass Transfer
,
140
(
11
), p.
113001
.
3.
San
,
J. Y.
,
Huang
,
C. H.
, and
Shu
,
M. H.
,
1997
, “
Impingement Cooling of a Confined Circular Air Jet
,”
Int. J. Heat Mass Transfer
,
40
(
6
), pp.
1355
1364
.
4.
Fitzgerald
,
J. A.
, and
Garimella
,
S. V.
,
1998
, “
A Study of the Flow Field of a Confined and Submerged Impinging Jet
,”
Int. J. Heat Mass Transfer
,
41
(
8–9
), pp.
1025
1034
.
5.
Li
,
C. Y.
, and
Garimella
,
S. V.
,
2001
, “
Prandtl-Number Effects and Generalized Correlations for Confined and Submerged Jet Impingement
,”
Int. J. Heat Mass Transfer
,
44
(
18
), pp.
3471
3480
.
6.
Katti
,
V.
, and
Prabhu
,
S. V.
,
2008
, “
Influence of Spanwise Pitch on Local Heat Transfer Distribution for In-Line Arrays of Circular Jets With Spent Air Flow in Two Opposite Directions
,”
Exp. Therm. Fluid Sci.
,
33
(
1
), pp.
84
95
.
7.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P. M.
,
Lee
,
D. H.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2014
, “
Cross-Flow Effects on Impingement Array Heat Transfer With Varying Jet-to-Target Plate Distance and Hole Spacing
,”
Int. J. Heat Mass Transfer
,
75
, pp.
534
544
.
8.
Lee
,
J.
,
Ren
,
Z.
,
Ligrani
,
P.
,
Fox
,
M. D.
, and
Moon
,
H. K.
,
2015
, “
Crossflows From Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects
,”
Int. J. Therm. Sci.
,
88
, pp.
7
18
.
9.
Metzger
,
D. E.
,
Florschuetz
,
L. W.
,
Takeuchi
,
D. I.
,
Behee
,
R. D.
, and
Berry
,
R. A.
,
1979
, “
Heat Transfer Characteristics for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Mass Transfer
,
101
(
3
), pp.
526
531
.
10.
Florschuetz
,
L. W.
,
Metzger
,
D. E.
, and
Su
,
C. C.
,
1984
, “
Heat Transfer Characteristics for Jet Array Impingement With Initial Crossflow
,”
ASME J. Heat Mass Transfer
,
106
(
1
), pp.
34
41
.
11.
Van Treuren
,
K. W.
,
Wang
,
Z.
,
Ireland
,
P. T.
, and
Jones
,
T. V.
,
1994
, “
Detailed Measurements of Local Heat Transfer Coefficient and Adiabatic Wall Temperature Beneath an Array of Impinging Jets
,”
ASME J. Turbomach.
,
116
(
3
), pp.
369
374
.
12.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving from Macro to Micro Cooling
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55164
, p.
V03CT14A002
,
American Society of Mechanical Engineers
, Paper No. GT2013-94277.
13.
Al Dabagh
,
A. M.
,
Andrews
,
G. E.
,
Abdul Husain
,
R. A. A.
,
Husain
,
C. I.
,
Nazari
,
A.
, and
Wu
,
J.
,
1990
, “
Impingement/Effusion Cooling: The Influence of the Number of Impingement Holes and Pressure Loss on the Heat Transfer Coefficient
,”
ASME J. Turbomach.
,
112
(
3
), pp.
467
476
.
14.
Cho
,
H. H.
, and
Rhee
,
D. H.
,
2001
, “
Local Heat/Mass Transfer Measurement on the Effusion Plate in Impingement/Effusion Cooling System
,”
ASME J. Turbomach.
,
123
(
3
), pp.
601
608
.
15.
Cho
,
H. H.
,
Rhee
,
D. H.
, and
Goldstein
,
R. J.
,
2008
, “
Effects of Hole Arrangements on Local Heat/Mass Transfer for Impingement/Effusion Cooling With Small Hole Spacing
,”
ASME J. Turbomach.
,
130
(
4
), p.
041003
.
16.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
451
458
.
17.
Bunker
,
R. S.
, and
Metzger
,
D. E.
,
1990
, “
Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part II—Impingement Cooling With Film Coolant Extraction
,”
ASME J. Turbomach.
,
112
(
3
), pp.
459
466
.
18.
Taslim
,
M. E.
, and
Khanicheh
,
A.
,
2005
, “
Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes
,”
ASME J. Turbomach.
,
128
(
2
), pp.
310
320
.
19.
Yang
,
L.
,
Kan
,
R.
,
Ren
,
J.
, and
Jiang
,
H. D.
,
2013
, “
Effect of Film Cooling Arrangement on Impingement Heat Transfer on Turbine Blade Leading Edge
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
55140
, p.
V03AT12A037
,
American Society of Mechanical Engineers
, ASME Paper No. GT2013-95261.
20.
Qiu
,
D. D.
,
Luo
,
L.
,
Zhao
,
Z. Q.
,
Wang
,
S. T.
,
Wang
,
Z. Q.
, and
Sunden
,
B. A.
,
2021
, “
On Heat Transfer and Flow Characteristics of Jets Impinging Onto Concave Surface With Varying Bleeding Arrangements
,”
Int. J. Numer. Methods Heat Fluid Flow
,
31
(
12
), pp.
3642
3660
.
21.
Florschuetz
,
L. W.
,
Berry
,
R. A.
, and
Metzger
,
D. E.
,
1980
, “
Periodic Streamwise Variations of Heat Transfer Coefficients for Inline and Staggered Arrays of Circular Jets With Crossflow of Spent Air
,”
ASME J. Heat Transfer
,
102
(
1
), pp.
132
137
.
22.
Ekkad
,
S. V.
,
Huang
,
Y. Z.
, and
Han
,
J. C.
,
1999
, “
Impingement Heat Transfer on a Target Plate With Film Cooling Holes
,”
J. Thermophys. Heat Transfer
,
13
(
4
), pp.
522
528
.
23.
Taslim
,
M. E.
, and
Bethka
,
D.
,
2009
, “
Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow
,”
ASME J. Turbomach.
,
131
(
1
), p.
011021
.
24.
Zhang
,
L. Z.
,
Yin
,
J.
, and
Moon
,
H. K.
,
2017
, “Airfoil for Turbomachine and Airfoil Cooling Method,” U.S. Patent Publication No. US 2017/0248022 A1.
25.
Deng
,
Q. H.
,
Wang
,
H. H.
,
He
,
W.
, and
Feng
,
Z. P.
,
2022
, “
Cooling Characteristic of a Wall Jet for Suppressing Crossflow Effect Under Conjugate Heat Transfer Condition
,”
Aerospace-Basel
,
9
(
1
), p.
29
.
26.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
,
2019
, “
Effects of Jetting Orifice Geometry Parameters and Channel Reynolds Number on Bended Channel Cooling for a Novel Internal Cooling Structure
,”
Turbo Expo: Power for Land, Sea, and Air
, Vol.
58646
, p.
V05AT11A005
,
American Society of Mechanical Engineers
, ASME Paper No. GT2019-90421.
27.
He
,
W.
,
Deng
,
Q. H.
,
He
,
J.
,
Gao
,
T. Y.
, and
Feng
,
Z. P.
,
2019
, “
Heat Transfer and Flow Mechanisms of Jetting Deflection in a Novel Bended Channel Cooling for Gas Turbine Blades
,”
5th International Workshop on Heat-Mass Transfer Advances for Energy Conservation and Pollution Control
,
Novosibirsk, Russia
,
Aug. 13–16
, IWHT Paper No. 2019-53.
28.
Wang
,
H. H.
,
Deng
,
Q. H.
,
He
,
W.
, and
Feng
,
Z. P.
,
2023
, “
Cooling and Flow Characteristics of Multi-Channel Wall Jet Structure With Film Holes at Blade Leading Edge
,”
ASME J. Turbomach.
,
145
(
6
), p.
061009
.
29.
He
,
W.
,
Deng
,
Q. H.
,
Yang
,
G. Y.
, and
Feng
,
Z. P.
,
2021
, “
Effects of Turning Angle and Turning Internal Radius on Channel Impingement Cooling for a Novel Internal Cooling Structure
,”
ASME J. Turbomach.
,
143
(
9
), p.
091005
.
30.
Timko
,
L. P.
,
1984
,
Energy Efficient Engine High Pressure Turbine Component Test Performance Report
,
NASA
,
Washington, DC
.
31.
Tabor
,
G. R.
, and
Baba-Ahmadi
,
M. H.
,
2010
, “
Inlet Conditions for Large Eddy Simulation: A Review
,”
Comput. Fluids
,
39
(
4
), pp.
553
567
.
32.
Yang
,
Z. Y.
,
2015
, “
Large-Eddy Simulation: Past, Present and the Future
,”
Chin. J. Aeronaut.
,
28
(
1
), pp.
11
24
.
33.
Keylock
,
C. J.
,
Tokyay
,
T. E.
, and
Constantinescu
,
G.
,
2011
, “
A Method for Characterising the Sensitivity of Turbulent Flow Fields to the Structure of Inlet Turbulence
,”
J. Turbul.
,
12
(
45
), pp.
1
30
.
34.
Nicoud
,
F.
, and
Ducros
,
F.
,
1999
, “
Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor
,”
Flow, Turbul. Combust.
,
62
(
3
), pp.
183
200
.
35.
Otero-Pérez
,
J. J.
,
Sandberg
,
R. D.
,
Mizukami
,
S.
, and
Tanimoto
,
K.
,
2021
, “
High-Fidelity Simulations of Multi-Jet Impingement Cooling Flows
,”
ASME J. Turbomach.
,
143
(
8
), p.
081011
.
36.
Li
,
Y. F.
,
Xu
,
H. Z.
,
Wang
,
J. H.
,
Zhu
,
J. Q.
, and
Chen
,
Y.
,
2023
, “
Large Eddy Simulation of Trenched Cylindrical Film Hole With Backward Compound Angles
,”
Int. J. Therm. Sci.
,
184
, p.
107910
.
37.
Choi
,
H.
, and
Moin
,
P.
,
2012
, “
Grid-Point Requirements for Large Eddy Simulation: Chapman’s Estimates Revisited
,”
Phys. Fluids
,
24
(
1
), p.
011702
.
38.
Piomelli
,
U.
,
Chasnov
,
J. R.
, et al
,
1996
, “Large-Eddy Simulations: Theory and Applications,”
Turbulence and Transition Modelling
,
M.
Hallback
,
D. S.
Henningson
,
A. V.
Johansson
, et al
, eds.,
Kluwer, Springer
,
Dordrecht, The Netherlands
, pp.
269
331
.
39.
Georgiadis
,
N. J.
,
Rizzetta
,
D. P.
, and
Fureby
,
C.
,
2010
, “
Large-Eddy Simulation: Current Capabilities, Recommended Practices, and Future Research
,”
AIAA J.
,
48
(
8
), pp.
1772
1784
.
40.
Laskowski
,
G. M.
, and
Durbin
,
P. A.
,
2007
, “
Direct Numerical Simulations of Turbulent Flow Through a Stationary and Rotating Infinite Serpentine Passage
,”
Phys. Fluids
,
19
(
1
), p.
015101
.
41.
Cheah
,
S. C.
,
Iacovides
,
H.
,
Jackson
,
D. C.
,
Ji
,
H.
, and
Launder
,
B. E.
,
1996
, “
LDA Investigation of the Flow Development Through Rotating U-Ducts
,”
ASME J. Turbomach.
,
118
(
3
), pp.
590
596
.
42.
Guleren
,
K. M.
, and
Turan
,
A.
,
2007
, “
Validation of Large-Eddy Simulation of Strongly Curved Stationary and Rotating U-Duct Flows
,”
Int. J. Heat Fluid Flow
,
28
(
5
), pp.
909
921
.
43.
Saha
,
K.
, and
Acharya
,
S.
,
2013
, “
Bend Geometries in Internal Cooling Channels for Improved Thermal Performance
,”
ASME J. Turbomach.
,
135
(
3
), p.
031028
.
44.
Ligrani
,
P. M.
, and
Niver
,
R. D.
,
1988
, “
Flow Visualization of Dean Vortices in a Curved Channel With 40 to 1 Aspect Ratio
,”
Phys. Fluids
,
31
(
12
), pp.
3605
3617
.
You do not currently have access to this content.