Abstract

In the pursuit of advancing active flow control (AFC) technology, a more promising nonsteady actuator known as sweeping jet actuator (SJA) has been equipped on the endwall to manage the corner separation in a compressor cascade, while the steady jet actuators with holes were used for comparison. Experimental investigations have been conducted in a low-speed wind tunnel with an inflow Mach number of 0.23. Five-hole probe measurements and the oil flow visualizations were carried out to demonstrate the performance and physics of steady and unsteady blowing on controlling the corner separation. The transient data at the measurement plane were also obtained using the dynamic pressure sensors to get insight into the unsteady characteristics. Variation of jet momentum of both actuators and the excitation frequency of the SJA allows determination of favorable control parameters. Using the SJA with only 0.13% of the cascade mass flow, the total pressure loss which takes the additional energy input into account is reduced by 14.2%, while the steady jet achieves a reduction of 8.4%. The results highlight the superior characteristics of the SJA in controlling the corner separation.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Dickens
,
T.
, and
Ivor
,
D.
,
2011
, “
The Design of Highly Loaded Axial Compressors
,”
ASME J. Turbomach.
,
133
(
3
), p.
031007
.
2.
Lei
,
V.
,
Spakovszky
,
Z. S.
, and
Greitzer
,
E. M.
,
2008
, “
A Criterion for Axial Compressor Hub-Corner Stall
,”
ASME J. Turbomach.
,
130
(
3
), p.
031006
.
3.
Gbadebo
,
S. A.
,
Nicholas
,
A. C.
, and
Tom
,
P. H.
,
2005
, “
Three-Dimensional Separations in Axial Compressors
,”
ASME J. Turbomach.
,
127
(
2
), pp.
331
339
.
4.
Culley
,
D. E.
,
Bright
,
M. M.
,
Prahst
,
P. S.
, and
Strazisar
,
A. J.
,
2004
, “
Active Flow Separation Control of a Stator Vane Using Embedded Injection in a Multistage Compressor Experiment
,”
ASME J. Turbomach.
,
126
(
1
), pp.
24
34
.
5.
Nerger
,
D.
,
Saathoff
,
H.
,
Radespiel
,
R.
,
Gümmer
,
V.
, and
Clemen
,
C.
,
2011
, “
Experimental Investigation of Endwall and Suction Side Blowing in a Highly Loaded Compressor Stator Cascade
,”
ASME J. Turbomach.
,
134
(
2
), p.
021010
.
6.
Staats
,
M.
,
Ebert
,
C.
, and
Weiss
,
J.
,
2019
, “
Experimental Investigations on Active Flow Control Applied to an Asymmetric Compressor Cascade
,”
AIAA Aviation 2019 Forum
, p.
3494
, AIAA Paper No. 2019-3494.
7.
Steinberg
,
S.
, and
King
,
R.
,
2018
, “
Closed-Loop Active Flow Control of Repetitive Disturbances in a Linear Stator Cascade
,”
2018 Flow Control Conference
, p.
3689
, AIAA Paper No. 2018-3689.
8.
Staats
,
M.
, and
Nitsche
,
W.
,
2015
, “
Active Control of the Corner Separation on a Highly Loaded Compressor Cascade With Periodic Non-Steady Boundary Conditions by Means of Fluidic Actuators
,”
ASME J. Turbomach.
,
138
(
3
), p.
031004
.
9.
Steinberg
,
S. J.
,
Staats
,
M.
,
Nitsche
,
W.
, and
King
,
R.
,
2015
, “
Iterative Learning Active Flow Control Applied to a Compressor Stator Cascade With Periodic Disturbances
,”
ASME J. Turbomach.
,
137
(
11
), p.
111003
.
10.
Tiedemann
,
C.
,
Heinrich
,
A.
, and
Peitsch
,
D.
,
2012
, “
A New Linear High Speed Compressor Stator Cascade for Active Flow Control Investigations
,”
6th AIAA Flow Control Conference
, p.
3251
, AIAA Paper No. 2012-3251.
11.
Chen
,
S.
,
Yang
,
P.
,
Shi
,
Y.
, and
Meng
,
Q.
,
2023
, “
Active Flow Control in Compressor Cascades With Steady and Pulsed Jets
,”
J. Propul. Power
,
39
(
4
), pp.
501
510
.
12.
Kiesner
,
M.
, and
King
,
R.
,
2017
, “
Multivariable Closed-Loop Active Flow Control of a Compressor Stator Cascade
,”
AIAA J.
,
55
(
10
), pp.
3371
3380
.
13.
Hecklau
,
M.
,
Wiederhold
,
O.
,
Zander
,
V.
,
King
,
R.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2012
, “
Active Separation Control With Pulsed Jets in a Critically Loaded Compressor Cascade
,”
AIAA J.
,
49
(
8
), pp.
1729
1739
.
14.
Gmelin
,
C.
,
Zander
,
V.
,
Hecklau
,
M.
,
Thiele
,
F.
,
Nitsche
,
W.
,
Huppertz
,
A.
, and
Swoboda
,
M.
,
2012
, “
Active Flow Control Concepts on a Highly Loaded Subsonic Compressor Cascade: Résumé of Experimental and Numerical Results
,”
ASME J. Turbomach.
,
134
(
6
), p.
061021
.
15.
Spens
,
A.
,
Pisano
,
A. P.
, and
Bons
,
J. P.
,
2023
, “
Leading-Edge Active Flow Control Enabled by Curved Fluidic Oscillators
,”
AIAA J.
,
61
(
4
), pp.
1675
1686
.
16.
Chen
,
S.
,
Li
,
W.
,
Yang
,
P.
, and
Liu
,
Y.
,
2023
, “
Aerodynamic Performance and Leakage Flow in Turbine Cascades With Sweeping Jet Actuators
,”
ASME J. Turbomach.
,
145
(
6
), p.
061015
.
17.
Woszidlo
,
R.
,
Ostermann
,
F.
, and
Schmidt
,
H. J.
,
2019
, “
Fundamental Properties of Fluidic Oscillators for Flow Control Applications
,”
AIAA J.
,
57
(
3
), pp.
978
992
.
18.
Cerretelli
,
C.
, and
Gharaibah
,
E.
,
2012
, “
An Experimental and Numerical Investigation on Fluidic Oscillators for Flow Control
,”
37th AIAA Fluid Dynamics Conference and Exhibit
, p.
3854
, AIAA Paper No. 2007-3854.
19.
Raghu
,
S.
,
2013
, “
Fluidic Oscillators for Flow Control
,”
Exp. Fluids
,
54
(
2
), p.
1455
.
20.
Gregory
,
J.
, and
Tomac
,
M. N.
,
2013
, “
A Review of Fluidic Oscillator Development and Application for Flow Control
,”
AIAA Fluid Dynamics Conference
, p.
2474
, AIAA Paper No. 2013-2474.
21.
Hossain
,
M. A.
,
Ameri
,
A.
,
Gregory
,
J. W.
, and
Bons
,
J. P.
,
2021
, “
Experimental Investigation of Innovative Cooling Schemes on an Additively Manufactured Engine Scale Turbine Nozzle Guide Vane
,”
ASME J. Turbomach.
,
143
(
5
), p.
051004
.
22.
Brunna
,
D.
, and
Cravero
,
C.
,
2012
, “
Modeling the Aerodynamic Performance of Modern Axial Flow Compressor Profiles—A Correlative Approach Using Current CFD Technology
,”
45th AIAA Aerospace Sciences Meeting and Exhibit
, p.
21
, AIAA Paper No. 2007-21.
23.
Spens
,
A.
,
Brandt
,
P.
, and
Bons
,
J. P.
,
2021
, “
Characterization of Out-of-Plane Curved Fluidic Oscillators
,”
AIAA J.
,
62
(
4
), pp.
1563
1573
. .
24.
Tian
,
Q.
,
Simpson
,
R. L.
, and
Tang
,
G.
,
2004
, “
Flow Visualization on the Linear Compressor Cascade Endwall Using Oil Flows and Laser Doppler Anemometry
,”
Meas. Sci. Technol.
,
15
(
9
), pp.
1910
1916
.
You do not currently have access to this content.