Abstract

Centrifugal compressor aeromechanics is playing an increasingly important role in the energy transition scenario, especially when operating with low-molecular-weight gases, such as hydrogen. For these machines, maximum impeller tip speeds are limited by structural requirements and so aeromechanical assessment must be included from the preliminary design stages. When performing forced response analysis of centrifugal impellers, it is mandatory to consider the contribution of the unsteady forces acting within front and rear cavities. The flow field inside the cavities has different time and length scales compared with the main flow field, and from a modeling standpoint, seal regions have to be included in the computational domain: this means that a comprehensive computational fluid dynamics (CFD) simulation may require substantial efforts for the setup and high computational time and resources. In this context, this article presents an acoustic analytical model for predicting pressure perturbation within centrifugal compressor cavities without solving them with unsteady CFD approaches. The model is fed with appropriate boundary conditions to be applied at the entrance of the cavities and analytically solves the pressure perturbation distribution in an annular environment. To validate the presented analytical model, unsteady calculations were performed on impeller-vaned diffuser domains with cavities at different operating conditions, and the unsteady pressure field in the cavities was used as a target solution. The comparison between the analytical model results and the CFD solution shows a very good agreement for all the different blade passing frequencies under investigation, paving the way for accurate aeromechanical evaluations in the preliminary design phase when complete unsteady CFD simulations are not compatible with design timing.

References

1.
Toni
,
L.
,
Guglielmo
,
A.
,
Grimaldi
,
A.
,
Cangioli
,
F.
,
Biliotti
,
D.
,
Belardini
,
E.
,
Meazzini
,
G.
, and
Miris
,
L.
,
2023
, “
Integrated Aero-Mechanical Design and Experimental Validation for Next Generation Compressors for Energy Transition
,”
ASME Turbo Expo 2023
,
Boston, MA
,
June 26–30
, p. V13DT35A025.
2.
Dickmann
,
H. P.
,
Secall
,
W. T.
,
Szwedowicz
,
J.
,
Filsinger
,
D.
, and
Roduner
,
C. H.
,
2005
, “
Unsteady Flow in a Turbocharger Centrifugal Compressor: Three-Dimensional Computational Fluid Dynamics Simulation and Numerical and Experimental Analysis of Impeller Blade Vibration
,”
ASME J. Turbomach.
,
128
(
3
), pp.
455
465
.
3.
Zemp
,
A.
, and
Abhari
,
R. S.
,
2012
, “
Vaned Diffuser Induced Impeller Blade Vibrations in a High-Speed Centrifugal Compressor
,”
ASME J. Turbomach.
,
135
(
2
), p.
021015
.
4.
Mischo
,
B.
,
Jenny
,
P.
,
Mauri
,
S.
,
Bidaut
,
Y.
,
Kramer
,
M.
, and
Spengler
,
S.
,
2018
, “
Numerical and Experimental Fluid–Structure Interaction-Study to Determine Mechanical Stresses Induced by Rotating Stall in Unshrouded Centrifugal Compressor Impellers
,”
ASME J. Turbomach.
,
140
(
11
), p.
111006
.
5.
Lottini
,
F.
,
Agnolucci
,
A.
,
Pinelli
,
L.
,
Pacciani
,
R.
,
Toni
,
L.
,
Guglielmo
,
A.
, and
Grimaldi
,
A.
,
2022
, “
Impact of Operating Conditions on Rotor/Stator Interaction of a High-Pressure Ratio Centrifugal Compressor
,”
ASME Turbo Expo 2022
,
Rotterdam, Netherlands
,
June 13–17
, p. V10BT35A007.
6.
Clancy
,
C.
,
Moyroud
,
F.
, and
Ramakrishnan
,
K.
,
2014
, “
Effect of Cavities on Impeller Aeromechanical Forcing in a Low Pressure Ratio Centrifugal Compressor Stage
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, p. V02DT44A044.
7.
Tyler
,
J. M.
, and
Sofrin
,
T. G.
,
1962
,
Axial Flow Compressor Noise Studies
, Vol.
70
,
SAE Transactions
. http://www.jstor.org/stable/44469492
8.
Shahin
,
B.
,
Alqaradawi
,
M.
,
Gadala
,
M.
, and
Badr
,
O.
,
2017
, “
On the Aero Acoustic and Internal Flows Structure in a Centrifugal Compressor With Hub Side Cavity Operating at Off Design Condition
,”
Aerosp. Sci. Technol.
,
60
(
1
), pp.
68
83
.
9.
König
,
S.
,
Petry
,
N.
, and
Wagner
,
N. G.
,
2009
, “
Aeroacoustic Phenomena in High Pressure Centrifugal Compressors—A Possible Root Cause for Impeller Failures
,”
38th Turbomachinery Symposium
,
Houston, TX
,
Sept. 12–15
.
10.
Toni
,
L.
,
Moyroud
,
F.
,
Rubino
,
D. T.
,
Gatta
,
G.
,
Guglielmo
,
A.
, and
Ramakrishnan
,
K.
,
2016
, “
Aero-damping Measurements and Computation in a Full-Scale Multistage Centrifugal Compressor
,”
45th Turbomachinery & 32nd Pump Symposia
,
Houston, TX
,
Sept. 12–15
.
11.
Guidotti
,
E.
,
Toni
,
L.
,
Rubino
,
D. T.
,
Tapinassi
,
L.
,
Naldi
,
G.
,
Koyyalamudi
,
V. V. N. K. S.
, and
Sridhar
,
P.
,
2014
, “
Influence of Cavity Flows Modeling on Centrifugal Compressor Stages Performance Prediction Across Different Flow Coefficient Impellers
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, p. V02DT42A018.
12.
Younsi
,
M.
,
Corneloup
,
C.
,
Moyroud
,
F.
, and
Baldacci
,
A.
,
2017
, “
Unsteady Flow in a Centrifugal Compressor Stage Equipped With a Vaned Diffuser and Cavities
,”
ASME Turbo Expo 2017
,
Charlotte, NC
,
June 26–30
.
13.
Guo
,
Z.
,
Liu
,
P.
, and
Guo
,
H.
,
2020
, “
Investigation on Spatial Distribution of Acoustic Resonance in Annular Cavity: Frequency and Intensity
,”
Int. J. Aeroacoust.
,
19
(
1–2
), pp.
73
94
.
14.
Guidotti
,
E.
,
Tapinassi
,
L.
,
Toni
,
L.
,
Bianchi
,
L.
,
Gaetani
,
P.
, and
Persico
,
G.
,
2011
, “
Experimental and Numerical Analysis of the Flow Field in the Impeller of a Centrifugal Compressor Stage at Design Point
,”
ASME Turbo Expo 2011
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
1845
1856
.
15.
González Díez
,
N.
,
Smeulers
,
J. P. M.
,
Tapinassi
,
L.
,
Del Greco
,
A. S.
, and
Toni
,
L.
,
2014
, “
Predictability of Rotating Stall and Surge in a Centrifugal Compressor Stage With Dynamic Simulations
,”
ASME Turbo Expo 2014
,
Düsseldorf, Germany
,
June 16–20
, p. V02DT44A032.
16.
Bianchini
,
A.
,
Ferrara
,
G.
,
Ferrari
,
L.
,
Ballarini
,
V.
,
Bianchi
,
L.
,
Tapinassi
,
L.
, and
Toni
,
L.
,
2012
, “
Effects Due to the Temperature Measurement Section on the Performance Estimation of a Centrifugal Compressor Stage
,”
ASME J. Eng. Gas Turbines Power.
,
134
(
3
), p.
032402
.
17.
Da Soghe
,
R.
,
Bianchini
,
C.
,
Tommaso
,
R. D.
, and
Toni
,
L.
,
2016
, “
Effects of Impeller Squealer Tip on Centrifugal Compressor Performance
,”
ASME J. Eng. Gas Turbines Power.
,
139
(
3
), p.
032603
.
18.
Menter
,
F. R..
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA. J.
,
32
(
8
), pp.
1598
1605
.
19.
Giles
,
M. B
,
1988
, “
Calculation of Unsteady Wake/Rotor Interaction
,”
J. Propul. Power.
,
4
(
4
), pp.
356
362
.
20.
Miroslav
,
P.
,
Michal
,
B.
, and
Tomáš
,
H.
,
2012
, “
Modal Assurance Criterion
,”
Procedia. Eng.
,
48
(
1
), pp.
543
548
.
You do not currently have access to this content.