Abstract

To ensure the durability and reliability of gas turbine, film cooling has been integrated into the design of the modern gas turbine vane endwall, especially for the first-stage vane endwall. Percussion laser drilling has been a very attractive technique used to drill holes in aero-engine hot components, due to its capability of drilling on a thermal barrier coated-superalloy in milliseconds. It should be noticed that micro-geometric deviations often exist in the resulting holes manufactured by laser drilling. However, most of the investigations in the literature treated the aleatory geometric imperfections as deterministic or ideal cases, which imported an uncertainty bias to life prediction. Therefore, a detailed uncertainty quantification analysis is performed to quantify the impacts of laser drilling imperfections on the endwall cooling performance in this article. This article conducted a dual non-deterministic analysis to analyze the cooling performance robustness of a double-row film holes scheme employed in a high-pressure turbine nozzle guide vane, subjecting to the variability of film hole geometric parameters set by manufacturing deviation range. First, to evaluate the impact of laser drilling imperfections on the endwall cooling performance, a conical nozzle film hole imperfection model is proposed to parameterize the real laser drilled hole. Then, a fundamental uncertainty quantification framework, which combines the conical nozzle parameterized model, non-intrusion Polynomial Chaos UQ methodology, and k-Nearest Neighbor clustering algorithm, is built to quantify the cooling performance while geometric parameters of all film holes are consistent. The UQ results show that the likelihood of all holes being on the edge of their tolerance range increases dramatically. Large variations in mass flow ratio and film cooling effectiveness were observed. Mass flow ratios ranged from 0.51% to 2.31% (μ ± 3σ), where the baseline MFR was 1.27%. The standard deviation of adiabatic effectiveness was up to 0.2. An additional consideration to be made is that for a more real-life scenario, the geometric parameters of all film holes are not identical. A flow parameter dimensionality reduction UQ approach (FPDR), which transforms the deviations of multiple geometric parameters into the fluctuations of several key flow parameters, is proposed to address the curse of dimensionality phenomenon in predicting the cooling performance under uncertain conditions of inconsistent film hole imperfection characteristic parameters. The results show that the fluctuation ranges of MFR and adiabatic cooling effectiveness under uncertain conditions of inconsistent film hole parameters are significantly reduced, less than one-fourth and one-fifth of the fluctuation ranges under conditions of consistent film hole parameters. The developed uncertainty quantification platform can provide a useful tool to evaluate the cooling performance robustness of advanced cooling systems with multi-row cylindrical cooling holes, considering laser drill imperfection.

References

1.
Fadlun
,
E. A.
,
Michelizzi
,
I.
, and
De Iaco
,
M.
,
2008
, “
Measurement Error Influence on Gas Turbine Operability for Condition-Based Maintenance and Reliability/Availability Improvement
,”
Proceedings of the ASME Turbo Expo
,
Berlin, Germany
,
June 9–13
.
2.
Bunker
,
R. S.
,
2009
, “
The Effects of Manufacturing Tolerances on Gas Turbine Cooling
,”
ASME J. Turbomach.
,
131
(
4
), p.
041018
.
3.
Bunker
,
R. S.
,
2013
, “
Gas Turbine Cooling: Moving From Macro to Micro Cooling
,”
Proceedings of the ASME Turbo Expo
,
San Antonio, TX
,
June 3–7
,
p. V03CT14A002
.
4.
Moeckel
,
C. W.
,
2009
, “
Toleranced Designs of Cooled Turbine Blades Through Probabilistic Thermal Analysis of Manufacturing Variability
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
McNally
,
C. A.
,
Folkes
,
J.
, and
Pashby
,
I. R.
,
2004
, “
Laser Drilling of Cooling Holes in Aeroengines: State of the Art and Future Challenges
,”
Mater. Sci. Technol.
,
20
(
7
), pp.
805
813
.
6.
Bandyopadhyay
,
S.
,
Sarin Sundar
,
J. K.
,
Sundararajan
,
G.
, and
Joshi
,
S. V.
,
2002
, “
Geometrical Features and Metallurgical Characteristics of Nd:YAG Laser Drilled Holes in Thick IN718 and Ti–6Al–4 V Sheets
,”
J. Mater. Process. Technol.
,
127
(
1
), pp.
83
95
.
7.
Jovanovic
,
M. B.
,
de Lange
,
H. C.
, and
van Steenhoven
,
A. A.
,
2005
, “
Influence of Laser Drilling Imperfection on Film Cooling Performances
,”
Proceedings of the ASME Turbo Expo
,
Reno, NV
,
June 6–9
.
8.
Jovanović
,
M. B.
,
de Lange
,
H. C.
, and
van Steenhoven
,
A. A.
,
2008
, “
Effect of Hole Imperfection on Adiabatic Film Cooling Effectiveness
,”
Int. J. Heat Fluid Flow
,
29
(
2
), pp.
377
386
.
9.
Rezzag
,
T.
, and
Jubran
,
B. A.
,
2019
, “
A Numerical Study on the Effect of Hole Inclination Angle With Imperfection on Film Cooling Effectiveness
,”
Proceedings of the ASME Turbo Expo
,
Phoenix, AZ
,
June 17–21
,
p. V05AT12A007
.
10.
Cerantola
,
D. J.
, and
Birk
,
A. M.
,
2017
, “
Numerical Investigation of a Laser-Drilled Cooling Hole
,”
Proceedings of the ASME Turbo Expo
,
Charlotte, NC
,
June 26–30
,
p. V05BT22A003
.
11.
Cerantola
,
D. J.
, and
Birk
,
A. M.
,
2018
, “
Quantifying Blowing Ratio for Shaped Cooling Holes
,”
ASME J. Turbomach.
,
140
(
2
), p.
021008
.
12.
Sakai
,
E.
,
Bai
,
M.
,
Ahlfeld
,
R.
, and
Montomoli
,
F.
,
2018
, “
Uncertainty Quantification Analysis of Back Facing Steps Film Cooling Configurations
,”
Proceedings of the ASME Turbo Expo
,
Oslo, Norway
,
June 11–15
,
p. V05AT12A009
.
13.
Tao
,
Z.
,
Guo
,
Z.
,
Song
,
L.
, and
Li
,
J.
,
2021
, “
Uncertainty Quantification of Aero-Thermal Performance of a Blade Endwall Considering Slot Geometry Deviation and Mainstream Fluctuation
,”
ASME J. Turbomach.
,
143
(
11
), p.
111013
.
14.
Hao
,
M.
,
Bai
,
B.
,
Li
,
Y.
,
Li
,
Z.
, and
Li
,
J.
,
2022
, “
Uncertainty Quantification on the Cooling Performance of a Transonic Turbine Vane With Upstream Endwall Misalignment
,”
ASME J. Turbomach.
,
144
(
12
), p.
121004
.
15.
Huang
,
M.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Robustness Analysis on Aerothermal Performance of the Winglet Squealer Tip—Part II: Heat Transfer Performance
,”
ASME J. Turbomach.
,
145
(
1
), p.
011014
.
16.
Huang
,
M.
,
Li
,
Z.
, and
Li
,
J.
,
2023
, “
Robustness Analysis on Aerothermal Performance of the Winglet Squealer Tip—Part 1: Aerodynamic Performance
,”
ASME J. Turbomach.
,
145
(
1
), p.
011013
.
17.
Montomoli
,
F.
,
Massini
,
M.
,
Salvadori
,
S.
, and
Martelli
,
F.
,
2012
, “
Geometrical Uncertainty and Film Cooling: Fillet Radii
,”
ASME J. Turbomach.
,
134
(
1
), p.
011019
.
18.
Straub
,
D. L.
,
Sidwell
,
T. G.
,
Casleton
,
K. H.
,
Alvin
,
M. A.
,
Chien
,
S.
, and
Chyu
,
M. K.
,
2012
, “
High Temperature Film Cooling Test Facility and Preliminary Test Results
,”
Proceedings of the ASME Turbo Expo
,
Copenhagen, Denmark
,
June 11–15
.
19.
Sidwell
,
T. G.
,
Lawson
,
S. A.
,
Straub
,
D. L.
,
Casleton
,
K. H.
, and
Beer
,
S.
,
2013
, “
Conjugate Heat Transfer Modeling of a Film-Cooled, Flat-Plate Test Specimen in a Gas Turbine Aerothermal Test Facility
,”
Proceedings of the ASME Turbo Expo
,
San Antonio, TX
,
June 3–7
, p. V03BT11A012.
20.
Ramesh
,
S.
,
Ekkad
,
S. V.
,
Straub
,
D. L.
,
Lawson
,
S. A.
, and
Alvin
,
M. A.
,
2014
, “
Experimental and Computational Analysis of Film Cooling Hole Performance on a High Temperature Test rig
,”
Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition
,
Montreal, Quebec, Canada
,
Nov. 14–20
,
p. V08BT10A007
.
21.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 1—Effect of Density Ratio
,”
ASME J. Turbomach.
,
144
(
5
), p.
051003
.
22.
Mao
,
S.
,
Sibold
,
R.
,
Ng
,
W. F.
,
Li
,
Z.
,
Bai
,
B.
,
Xu
,
H.
, and
Fox
,
M.
,
2022
, “
Experimental Study of the Endwall Heat Transfer of a Transonic Nozzle Guide Vane With Upstream Jet Purge Cooling Part 2—Effect of Combustor-Nozzle Guide Vane Misalignment
,”
ASME J. Turbomach.
,
144
(
5
), p.
051004
.
23.
Harrison
,
K. L.
, and
Bogard
,
D. G.
,
2008
, “
Comparison of RANS Turbulence Models for Prediction of Film Cooling Performance
,”
Proceedings of the ASME Turbo Expo
,
Berlin, Germany
,
June 9–13
.
24.
Li
,
Z.
,
Liu
,
L.
,
Li
,
J.
,
Sibold
,
R. A.
,
Ng
,
W. F.
,
Xu
,
H.
, and
Fox
,
M.
,
2018
, “
Effects of Upstream Step Geometry on Axisymmetric Converging Vane Endwall Secondary Flow and Heat Transfer at Transonic Conditions
,”
ASME J. Turbomach.
,
140
(
12
), p.
121008
.
25.
Ekkad
,
S. V.
,
Han
,
J. C.
, and
Du
,
H.
,
1998
, “
Detailed Film Cooling Measurements on a Cylindrical Leading Edge Model: Effect of Free-Stream Turbulence and Coolant Density
,”
ASME J. Turbomach.
,
120
(
4
), pp.
799
807
.
26.
Thole
,
K. A.
,
Sinha
,
A. K.
, and
Bogard
,
D. G.
,
1990
, “
Mean Temperature Measurements of Jets With a Crossflow for Gas Turbine Film Cooling Application
,”
Third International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC-3)
,
Honolulu, HI
,
Apr. 1–4
, pp.
69
85
.
27.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2021
, “
The Effects of Axisymmetric Convergent Contouring and Blowing Ratio on Endwall Film Cooling and Vane Pressure Side Surface Phantom Cooling Performance
,”
ASME J. Eng. Gas Turbines Power
,
144
(
2
), p.
021020
.
28.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2022
, “
Effects of Upstream Step Geometries on Endwall Film Cooling and Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
12
), p.
121005
.
29.
Bai
,
B.
,
Li
,
Z.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W.
,
2022
, “
Turbine Vane Endwall Film Cooling and Pressure Side Phantom Cooling Performances With Upstream Coolant Flow at Various Injection Angles
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
11
), p.
111014
.
30.
Bai
,
B.
,
Li
,
Z.
,
Zhang
,
K.
,
Li
,
J.
,
Mao
,
S.
, and
Ng
,
W. F.
,
2023
, “
Effects of Hole Blockage on Endwall Film Cooling and Vane Phantom Cooling Performances of a Transonic Turbine Vane
,”
ASME J. Eng. Gas Turbines Power
,
145
(
4
), p.
041001
.
31.
Rutledge
,
J. L.
,
Robertson
,
D.
, and
Bogard
,
D. G.
,
2006
, “
Degradation of Film Cooling Performance on a Turbine Vane Suction Side Due to Surface Roughness
,”
ASME J. Turbomach.
,
128
(
3
), pp.
547
554
.
32.
Cardwell
,
N. D.
,
Sundaram
,
N.
, and
Thole
,
K. A.
,
2005
, “
Effects of Mid-Passage Gap, Endwall Misalignment and Roughness on Endwall Film-Cooling
,”
Proceedings of the ASME Turbo Expo
,
Reno, NV
,
June 6–9
.
33.
Arisi
,
A.
,
Mayo
,
D.
,
Li
,
Z.
,
Ng
,
W. F.
,
Moon
,
H. K.
, and
Zhang
,
L.
,
2016
, “
An Experimental and Numerical Investigation of the Effect of Combustor-Nozzle Platform Misalignment on Endwall Heat Transfer at Transonic High Turbulence Conditions
,”
Proceedings of the ASME Turbo Expo
,
Seoul, South Korea
,
June 13–17
,
p. V05AT13A026
.
34.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Performance of Public Film Cooling Geometries Produced Through Additive Manufacturing
,”
ASME J. Turbomach.
,
142
(
5
), p.
051009
.
35.
Montomoli
,
F.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2011
, “
Geometrical Uncertainty in Turbomachinery: Tip Gap and Fillet Radius
,”
Computers & Fluids
,
46
(
1
), pp.
362
368
.
36.
Li
,
Z.
,
Montomoli
,
F.
,
Casari
,
N.
, and
Pinelli
,
M.
,
2023
, “
High-Dimensional Uncertainty Quantification of High-Pressure Turbine Vane Based on Multifidelity Deep Neural Networks
,”
ASME J. Turbomach.
,
145
(
11
), p.
111009
.
37.
Shi
,
W.
,
Chen
,
P.
,
Li
,
X.
,
Ren
,
J.
, and
Jiang
,
H.
,
2019
, “
Uncertainty Quantification of the Effects of Small Manufacturing Deviations on Film Cooling: A Fan-Shaped Hole
,”
Aerospace
,
6
(
4
), p.
46
.
38.
Schroeder
,
R. P.
, and
Thole
,
K. A.
,
2017
, “
Effect of In-Hole Roughness on Film Cooling From a Shaped Hole
,”
ASME J. Turbomach.
,
139
(
3
), p.
031004
.
39.
Montomoli
,
F.
,
Carnevale
,
M.
,
D'Ammaro
,
A.
,
Massini
,
M.
, and
Salvadori
,
S.
,
2015
,
“Uncertainty Quantification in Computational Fluid Dynamics and Aircraft Engines
,
Springer International Publishing
,
New York
, pp.
1
90
.
40.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener–Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.
41.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.
42.
Cover
,
T. M.
, and
Hart
,
P. E.
,
1953
, “
Nearest Neighbor Pattern Classification
,”
IEEE Trans. Inf. Theory
,
13
(
1
), pp.
21
27
.
43.
Friedman
,
J. H.
,
1994
,
Flexible Metric Nearest Neighbor Classification
, (Vol.
14
),” Technical report,
Department of Statistics, Stanford University
.
44.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J. H.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
, Vol.
2
, ed.,
Springer
,
New York
, pp.
1
758
.
45.
Samet
,
H.
,
1990
,
The Design and Analysis of Spatial Data Structures
, Vol.
85
,
Addison-Wesley
, Reading, MA, p.
87.
46.
Karimi
,
M. S.
,
Raisee
,
M.
,
Farhat
,
M.
,
Hendrick
,
P.
, and
Nourbakhsh
,
A.
,
2021
, “
On the Numerical Simulation of a Confined Cavitating Tip Leakage Vortex Under Geometrical and Operational Uncertainties
,”
Comput. Fluids
,
220
, p.
104881
.
47.
Karimi
,
M. S.
,
Raisee
,
M.
,
Salehi
,
S.
,
Hendrick
,
P.
, and
Nourbakhsh
,
A.
,
2021
, “
Robust Optimization of the NASA C3X gas Turbine Vane Under Uncertain Operational Conditions
,”
Int J Heat Mass Tran
,
164
, p.
120537
.
48.
Ornano
,
F.
, and
Povey
,
T.
,
2017
, “
Experimental and Computational Study of the Effect of Momentum-Flux Ratio on High-Pressure Nozzle Guide Vane Endwall Cooling Systems
,”
ASME J. Turbomach.
,
139
(
12
), p.
121002
.
49.
van de Noort
,
M.
,
Ireland
,
P. T.
, and
Telisinghe
,
J. C.
,
2024
, “
Effects of Manufacturing Tolerances on Double-Wall Effusion Cooling
,”
ASME J. Turbomach.
,
146
(
1
), p.
011009
.
You do not currently have access to this content.