Abstract

In this paper, a methodology for model parameter calibration for vibration fatigue analysis is proposed. It combines Bayesian updating of uncertain model parameters and artificial neural networks (ANNs). The calibrated parameters are used to increase the accuracy of fatigue lifetime calculations for components submitted to vibrational loads. The Bayesian updating uses eigenfrequencies, mode shapes, total mass, and the frequency response functions (FRFs). These quantities are predicted by ANN-based surrogate models to accelerate the Bayesian updating process. A novel strategy for the prediction of the magnitude and phase of FRFs with ANNs is proposed. The frequency is used as an additional input variable, and a schematic selection of significant points of the FRF curves is presented. A high prediction accuracy of the surrogate models could be achieved. The procedure includes the analysis of the relevant frequency range and a sensitivity analysis based on the Morris method to identify appropriate modes and the most-influential parameters. The proposed framework is applied to a current vehicle component subjected to vibrational loads. An experimental modal analysis is used for the calibration and consideration of real parameter uncertainty. First, the accuracy of the surrogate models and Bayesian updating is verified by a nominal reference simulation and then validated with experimental data. The measurable control parameter thickness and component mass are used to examine the calibration accuracy. Finally, a decrease in the dispersion of the vibration fatigue distribution is obtained with the calibrated parameters.

References

1.
Wang
,
L.
,
Burger
,
R.
, and
Aloe
,
A.
,
2017
, “
Considerations of Vibration Fatigue for Automotive Components
,”
SAE Int. J. Commer. Veh.
,
10
(
1
), pp.
150
158
.10.4271/2017-01-0380
2.
Wu
,
S.-D.
,
Shang
,
D.-G.
,
Liu
,
P.-C.
,
Hao
,
G.-C.
,
Hou
,
G.
,
Shi
,
F.-T.
, and
Miao
,
B.
,
2022
, “
Fatigue Life Prediction Based on Modified Narrowband Method Under Broadband Random Vibration Loading
,”
Int. J. Fatigue
,
159
, p.
106832
.10.1016/j.ijfatigue.2022.106832
3.
Mršnik
,
M.
,
Slavič
,
J.
, and
Boltežar
,
M.
,
2016
, “
Multiaxial Vibration Fatigue—A Theoretical and Experimental Comparison
,”
Mech. Syst. Signal Process.
,
76–77
, pp.
409
423
.10.1016/j.ymssp.2016.02.012
4.
Decker
,
M.
,
Kinscherf
,
S.
,
Bauer
,
N.
,
David
,
P.
, and
Serifsoy
,
M.
,
2018
, “
Deriving Fatigue Equivalent Power Spectral Density Spectra for the Vibration Testing of Engine Components
,”
Materialwiss. Werkstofftech.
,
49
(
3
), pp.
392
405
.10.1002/mawe.201700193
5.
Soize
,
C.
,
2005
, “
A Comprehensive Overview of a Non-Parametric Probabilistic Approach of Model Uncertainties for Predictive Models in Structural Dynamics
,”
J. Sound Vib.
,
288
(
3
), pp.
623
652
.10.1016/j.jsv.2005.07.009
6.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
25–28
), pp.
2131
2144
.10.1016/j.cma.2011.03.016
7.
Pelz
,
P. F.
,
Groche
,
P.
,
Pfetsch
,
M. E.
, and
Schaeffner
,
M.
,
2021
,
Mastering Uncertainty in Mechanical Engineering
,
Springer Nature
,
Switzerland
.
8.
Feldmann
,
R.
,
Gehb
,
C. M.
,
Schaeffner
,
M.
, and
Melz
,
T.
,
2022
, “
A Methodology for the Efficient Quantification of Parameter and Model Uncertainty
,”
ASME J. Verif., Validation, Uncertainty Quantif.
,
7
(
3
), p.
031001
.10.1115/1.4054575
9.
Bi
,
S.
,
Beer
,
M.
,
Cogan
,
S.
, and
Mottershead
,
J.
,
2023
, “
Stochastic Model Updating With Uncertainty Quantification: An Overview and Tutorial
,”
Mech. Syst. Signal Process.
,
204
, p.
110784
.10.1016/j.ymssp.2023.110784
10.
Smith
,
R. C.
,
2013
,
Uncertainty Quantification: Theory, Implementation, and Applications
, Vol.
12
,
SIAM
,
Philadelphia, PA
.
11.
Simoen
,
E.
,
De Roeck
,
G.
, and
Lombaert
,
G.
,
2015
, “
Dealing With Uncertainty in Model Updating for Damage Assessment: A Review
,”
Mech. Syst. Signal Process.
,
56–57
, pp.
123
149
.10.1016/j.ymssp.2014.11.001
12.
Huang
,
Y.
,
Shao
,
C.
,
Wu
,
B.
,
Beck
,
J. L.
, and
Li
,
H.
,
2019
, “
State-of-the-Art Review on Bayesian Inference in Structural System Identification and Damage Assessment
,”
Adv. Struct. Eng.
,
22
(
6
), pp.
1329
1351
.10.1177/1369433218811540
13.
Vanik
,
M. W.
,
Beck
,
J. L.
, and
Au
,
S.-K.
,
2000
, “
Bayesian Probabilistic Approach to Structural Health Monitoring
,”
J. Eng. Mech.
,
126
(
7
), pp.
738
745
.10.1061/(ASCE)0733-9399(2000)126:7(738)
14.
Kleinfeller
,
N.
,
Gehb
,
C. M.
,
Schaeffner
,
M.
,
Adams
,
C.
, and
Melz
,
T.
,
2021
, “
Assessment of Model Uncertainty in the Prediction of the Vibroacoustic Behavior of a Rectangular Plate by Means of Bayesian Inference
,”
International Conference on Uncertainty in Mechanical Engineering
, Virtual conference, June 7–8, pp.
264
277
.10.1007/978-3-030-77256-7_21
15.
Goller
,
B.
, and
Schueller
,
G.
,
2011
, “
Investigation of Model Uncertainties in Bayesian Structural Model Updating
,”
J. Sound Vib.
,
330
(
25
), pp.
6122
6136
.10.1016/j.jsv.2011.07.036
16.
Behmanesh
,
I.
, and
Moaveni
,
B.
,
2015
, “
Probabilistic Identification of Simulated Damage on the Dowling Hall Footbridge Through Bayesian Finite Element Model Updating
,”
Struct. Control Health Monit.
,
22
(
3
), pp.
463
483
.10.1002/stc.1684
17.
Kawrza
,
M.
,
Furtmüller
,
T.
, and
Adam
,
C.
,
2023
, “
System Identification Using Bayesian Model Updating With Cross-Signature Correlations
,”
Mech. Syst. Signal Process.
,
201
, p.
110650
.10.1016/j.ymssp.2023.110650
18.
Rocchetta
,
R.
,
Broggi
,
M.
,
Huchet
,
Q.
, and
Patelli
,
E.
,
2015
, “
Likelihoods Comparison in a Bayesian Updating Procedure for Fatigue Crack Detection
,”
Safety and Reliability of Complex Engineered Systems
(
ESREL 2015
), Zurich, Switzerland, Sept. 7–10, pp.
1
9
.https://www.researchgate.net/publication/309351556_LIKELIHOODS_COMPARISON_IN_A_BAYESIAN_UPDATING_PROCEDURE_FOR_FATIGUE_CRACK_DETECTION
19.
Farajpour
,
I.
, and
Atamturktur
,
S.
,
2013
, “
Error and Uncertainty Analysis of Inexact and Imprecise Computer Models
,”
J. Comput. Civ. Eng.
,
27
(
4
), pp.
407
418
.10.1061/(ASCE)CP.1943-5487.0000233
20.
Sudret
,
B.
,
Marelli
,
S.
, and
Wiart
,
J.
,
2017
, “
Surrogate Models for Uncertainty Quantification: An Overview
,” 2017 11th European Conference on Antennas and Propagation (
EUCAP
),
Paris, France
, Mar. 19–24, pp.
793
797
.10.23919/EuCAP.2017.7928679
21.
Angelikopoulos
,
P.
,
Papadimitriou
,
C.
, and
Koumoutsakos
,
P.
,
2015
, “
X-TMCMC: Adaptive Kriging for Bayesian Inverse Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
289
, pp.
409
428
.10.1016/j.cma.2015.01.015
22.
Kurent
,
B.
,
Friedman
,
N.
,
Ao
,
W. K.
, and
Brank
,
B.
,
2022
, “
Bayesian Updating of Tall Timber Building Model Using Modal Data
,”
Eng. Struct.
,
266
, p.
114570
.10.1016/j.engstruct.2022.114570
23.
Schneider
,
F.
,
Papaioannou
,
I.
,
Straub
,
D.
,
Winter
,
C.
, and
Müller
,
G.
,
2022
, “
Bayesian Parameter Updating in Linear Structural Dynamics With Frequency Transformed Data Using Rational Surrogate Models
,”
Mech. Syst. Signal Process.
,
166
, p.
108407
.10.1016/j.ymssp.2021.108407
24.
Sun
,
G.
, and
Wang
,
S.
,
2019
, “
A Review of the Artificial Neural Network Surrogate Modeling in Aerodynamic Design
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
,
233
(
16
), pp.
5863
5872
.10.1177/0954410019864485
25.
von Wysocki
,
T.
,
Rieger
,
F.
,
Tsokaktsidis
,
D. E.
, and
Gauterin
,
F.
,
2021
, “
Generating Component Designs for an Improved NVH Performance by Using an Artificial Neural Network as an Optimization Metamodel
,”
Designs
,
5
(
2
), p.
36
.10.3390/designs5020036
26.
Goller
,
B.
,
Broggi
,
M.
,
Calvi
,
A.
, and
Schueller
,
G.
,
2011
, “
A Stochastic Model Updating Technique for Complex Aerospace Structures
,”
Finite Elem. Anal. Des.
,
47
(
7
), pp.
739
752
.10.1016/j.finel.2011.02.005
27.
Lye
,
A.
,
Cicirello
,
A.
, and
Patelli
,
E.
,
2021
, “
Sampling Methods for Solving Bayesian Model Updating Problems: A Tutorial
,”
Mech. Syst. Signal Process.
,
159
, p.
107760
.10.1016/j.ymssp.2021.107760
28.
Patelli
,
E.
,
Broggi
,
M.
,
Govers
,
Y.
, and
Mottershead
,
J. E.
,
2017
, “
Model Updating Strategy of the DLR-AIRMOD Test Structure
,”
Procedia Eng.
,
199
, pp.
978
983
.10.1016/j.proeng.2017.09.221
29.
Ching
,
J.
, and
Chen
,
Y.-C.
,
2007
, “
Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging
,”
J. Eng. Mech.
,
133
(
7
), pp.
816
832
.10.1061/(ASCE)0733-9399(2007)133:7(816)
30.
Beck
,
J. L.
, and
Yuen
,
K.-V.
,
2004
, “
Model Selection Using Response Measurements: Bayesian Probabilistic Approach
,”
J. Eng. Mech.
,
130
(
2
), pp.
192
203
.10.1061/(ASCE)0733-9399(2004)130:2(192)
31.
Hastings
,
W. K.
,
1970
, “
Monte Carlo Sampling Methods Using Markov Chains and Their Applications
,”
Biometrika
,
57
(
1
), pp.
97
109
.10.1093/biomet/57.1.97
32.
Betz
,
W.
,
Papaioannou
,
I.
, and
Straub
,
D.
,
2016
, “
Transitional Markov Chain Monte Carlo: Observations and Improvements
,”
J. Eng. Mech.
,
142
(
5
), p.
04016016
.10.1061/(ASCE)EM.1943-7889.0001066
33.
Jaynes
,
E. T.
,
2003
,
Probability Theory: The Logic of Science
,
Cambridge University Press
,
Cambridge, UK
.
34.
Papadimitriou
,
C.
,
2016
, “
Bayesian Uncertainty Quantification and Propagation (UQ+P): State-of-the-Art Tools for Linear and Nonlinear Structural Dynamics Models
,”
Identification Methods for Structural Health Monitoring
, Springer International Publishing, Cham, Switzerland, pp.
137
170
.10.1007/978-3-319-32077-9_6
35.
Allemang
,
R. J.
,
2003
, “
The Modal Assurance Criterion—Twenty Years of Use and Abuse
,”
Sound Vib.
,
37
(
8
), pp.
14
23
.http://www.sandv.com/downloads/0308alle.pdf
36.
Silva
,
T. A.
,
Maia
,
N.
, and
Barbosa
,
J.
,
2012
, “
A Model Updating Technique Based on FRFS for Damped Structures
,” Proceedings of International Conference on Uncertainty in Structural Dynamics (
USD2012
), Katholieke Univ Leuven, Leuven, Belgium, Sept. 17–19, pp.
2213
2226
.https://past.isma-isaac.be/downloads/isma2012/papers/isma2012_0298.pdf
37.
Kollmannsberger
,
S.
,
D'Angella
,
D.
,
Jokeit
,
M.
, and
Herrmann
,
L.
,
2021
,
Deep Learning in Computational Mechanics
,
Springer
,
Switzerland
.
38.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Optimization
,” preprint
arXiv:1412.6980
.10.48550/arXiv.1412.6980
39.
Benasciutti
,
D.
, and
Tovo
,
R.
,
2005
, “
Spectral Methods for Lifetime Prediction Under Wide-Band Stationary Random Processes
,”
Int. J. Fatigue
,
27
(
8
), pp.
867
877
.10.1016/j.ijfatigue.2004.10.007
40.
Morris
,
M. D.
,
1991
, “
Factorial Sampling Plans for Preliminary Computational Experiments
,”
Technometrics
,
33
(
2
), pp.
161
174
.10.1080/00401706.1991.10484804
41.
Saltelli
,
A.
,
Tarantola
,
S.
,
Campolongo
,
F.
, and
Ratto
,
M.
,
2004
,
Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models
, Vol.
1
,
Wiley Online Library
,
Hoboken, NJ
.
42.
Campolongo
,
F.
,
Saltelli
,
A.
, and
Cariboni
,
J.
,
2011
, “
From Screening to Quantitative Sensitivity Analysis. A Unified Approach
,”
Comput. Phys. Commun.
,
182
(
4
), pp.
978
988
.10.1016/j.cpc.2010.12.039
43.
Schijve
,
J.
,
2009
,
Fatigue of Structures and Materials
,
Springer
,
The Netherlands
.
44.
Dirlik
,
T.
,
1985
, “
Application of Computers in Fatigue Analysis
,” Ph.D. thesis,
University of Warwick
,
Coventry, UK
.
45.
MSC Software Corporation
,
2022
, “
MSC Nastran Version 2022.2
,” Hexagon AB, Newport Beach, CA, accessed Nov. 15, 2023, https://www.mscsoftware.com/product/msc-nastran
46.
Lanczos
,
C.
,
1950
, “
An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators
,”
J. Res. Natl. Bur. Stand.
,
45
(
4
), pp.
255
282
.10.6028/jres.045.026
47.
Magna Powertrain Engineering Center Steyr GmbH & Co KG
,
2019
, “
FEMFAT Version 5.4.3
,” Femfat, St. Valentin, Austria, accessed Nov. 15, 2023, https://femfat.magna.com
48.
Renardy
,
M.
,
Joslyn
,
L. R.
,
Millar
,
J. A.
, and
Kirschner
,
D. E.
,
2021
, “
To Sobol or Not to Sobol? The Effects of Sampling Schemes in Systems Biology Applications
,”
Math. Biosci.
,
337
, p.
108593
.10.1016/j.mbs.2021.108593
49.
Python Software Foundation
,
2022
, “
Python Version 3.10.9
,” Python, Wilmington, DE, accessed Nov. 15, 2023, https://www.python.org/
50.
Kudela
,
J.
, and
Matousek
,
R.
,
2022
, “
Recent Advances and Applications of Surrogate Models for Finite Element Method Computations: A Review
,”
Soft Comput.
,
26
(
24
), pp.
13709
13733
.10.1007/s00500-022-07362-8
You do not currently have access to this content.