A systematic experimental study is presented in this paper on evaluating the effectiveness of a unified, multidomain algorithm for defect feature extraction in bearing condition monitoring and health diagnosis. The algorithm decomposes vibration signals measured on bearings by discrete wavelet transform and subsequently performs the Fourier transform on the wavelet coefficients. The effectiveness of such a unified technique is demonstrated through experimental case studies, which confirmed its advantage over the wavelet or Fourier transform techniques employed alone. Also, the unified technique has shown to be computationally more efficient than the enveloping technique based on continuous wavelet transform, thus providing a good signal processing tool for bearing defect diagnosis.

1.
Orhan
,
S.
,
Aktürk
,
N.
, and
Çelik
,
V.
, 2006, “
Vibration Monitoring for Defect Diagnosis of Rolling Element Bearings as a Predictive Maintenance Tool: Comprehensive Case Studies
,”
NDT & E Int.
,
39
, pp.
293
298
. 0963-8695
2.
Sun
,
Q.
,
Chen
,
P.
,
Zhang
,
D.
, and
Xi
,
F.
, 2004, “
Pattern Recognition for Automatic Machinery Fault Diagnosis
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
2
), pp.
307
316
.
3.
Dron
,
J. P.
,
Bolaers
,
F.
, and
Rasolofondraibe
,
I.
, 2004, “
Improvement of the Sensitivity of the Scalar Indicators (Crest Factor, Kurtosis) Using a Denoising Method by Spectral Subtraction: Application to the Detection of Defects in Ball Bearings
,”
J. Sound Vib.
0022-460X,
270
(
1–2
), pp.
61
73
.
4.
Cavacece
,
M.
, and
Introini
,
A.
, 2002, “
Analysis of Damage of Ball Bearings of Aeronautical Transmissions by Auto-Power Spectrum and Cross-Power Spectrum
,”
ASME J. Vibr. Acoust.
0739-3717,
124
(
2
), pp.
180
185
.
5.
Tse
,
P. W.
,
Peng
,
Y. H.
, and
Yam
,
R.
, 2001, “
Wavelet Analysis and Envelope Detection for Rolling Element Bearing Fault Diagnosis—Their Effectiveness and Flexibilities
,”
ASME J. Vibr. Acoust.
0739-3717,
123
(
3
), pp.
303
310
.
6.
Boltežar
,
M.
, and
Slavič
,
J.
, 2006, “
Fault Detection of DC Electric Motors Using the Bispectral Analysis
,”
Meccanica
0025-6455,
41
(
3
), pp.
283
297
.
7.
Mol
,
H. A.
, and
Van Nijen
,
G. C.
, 1997, “
Method for Analyzing Regularly Recurring Mechanical Vibrations
,” U.S. Patent No. 5,698,788.
8.
Mori
,
K.
,
Kasashima
,
N.
,
Yoshioka
,
T.
, and
Ueno
,
Y.
, 1996, “
Prediction of Spalling on a Ball Bearing by Applying the Discrete Wavelet Transform to Vibration Signals
,”
Wear
0043-1648,
195
, pp.
162
168
.
9.
Li
,
C. J.
, and
Ma
,
J.
, 1997, “
Wavelet Decomposition of Vibrations for Detection of Bearing-Localized Defects
,”
NDT & E Int.
0963-8695,
30
(
3
), pp.
143
149
.
10.
Prabhakar
,
S.
,
Mohanty
,
A. R.
, and
Sekhar
,
A. S.
, 2002, “
Application of Discrete Wavelet Transform for Detection of Ball Bearing Race Faults
,”
Tribol. Int.
0301-679X,
35
, pp.
793
800
.
11.
Lin
,
J.
,
Zuo
,
M. J.
, and
Fyfe
,
K. R.
, 2004, “
Mechanical Fault Detection Based on the Wavelet De-Noising Technique
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
1
), pp.
9
16
.
12.
Shi
,
D. F.
,
Wang
,
W. J.
, and
Qu
,
L. S.
, 2004, “
Defect Detection for Bearings Using Envelope Spectra of Wavelet Transform
,”
ASME J. Vibr. Acoust.
0739-3717,
126
(
4
), pp.
567
573
.
13.
Nikolaou
,
N. G.
, and
Antoniadis
,
I. A.
, 2002, “
Demodulation of Vibration Signals Generated by Defects in Rolling Element Bearings Using Complex Shifted Morlet Wavelets
,”
Mech. Syst. Signal Process.
0888-3270,
16
(
4
), pp.
677
694
.
14.
Chiementin
,
X.
,
Bolaers
,
F.
, and
Dron
,
J.
, 2007, “
Early Detection of Fatigue Damage on Rolling Element Bearings Using Adapted Wavelet
,”
ASME J. Vibr. Acoust.
0739-3717,
129
(
4
), pp.
495
506
.
15.
Wang
,
C.
,
Gao
,
R. X.
, and
Yan
,
R.
, 2009, “
Unified Time–Scale–Frequency Analysis for Machine Defect Signature Extraction: Theoretical Framework
,”
Mech. Syst. Signal Process.
0888-3270,
23
(
1
), pp.
226
235
.
16.
SKF Company
, 1996, SKF Bearing Maintenance Handbook, Denmark.
17.
Yan
,
R.
, and
Gao
,
R.
, 2003, “
A Hybrid Signal Processing Approach to Sensor Data Analysis
,”
Proceeding of the ASME International Mechanical Engineering Congress and Exposition (IMECE), Symposium on Intelligent Sensors and Sensor Networks
, Washington, DC, pp.
1159
1166
.
18.
Holm-Hansen
,
B. T.
,
Gao
,
R. X.
, and
Zhang
,
L.
, 2004, “
Customized Wavelet for Bearing Defect Detection
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
126
(
4
), pp.
740
745
.
19.
Fu
,
S.
,
Muralikrishna
,
B.
, and
Raja
,
J.
, 2003, “
Engineering Surface Analysis With Different Wavelet Bases
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
(
4
), pp.
844
852
.
20.
Zanardelli
,
W. G.
,
Strangas
,
E. G.
,
Khalil
,
H. K.
, and
Miller
,
J. M.
, 2005, “
Wavelet-Based Methods for the Prognosis of Mechanical and Electrical Failures in Electric Motors
,”
Mech. Syst. Signal Process.
0888-3270,
19
, pp.
411
426
.
21.
Harris
,
T.
, 1991,
Rolling Bearing Analysis
,
Wiley
,
New York
.
You do not currently have access to this content.