This paper considers the damped small-amplitude free-vibration of composite laminated strips subject to large in-plane forces and rotations. A theoretical framework is formulated for the prediction of the nonlinear damping of composite laminates subject to large Green–Lagrange axial strains and assuming a Kelvin viscoelastic solid. An extended beam finite element is developed capable of providing the nonlinear stiffness and damping matrices of the system. The linearized damped free-vibration equations associated with the deflected strip shape in the pre- and postbuckling region are presented. Numerical results quantify the strong geometric nonlinear effect of compressive in-plane loads on the modal damping and frequencies of composite strips. Measurements of the modal damping of a cross-ply glass/epoxy beam subject to buckling were also conducted and correlate well with the finite element predictions.

References

1.
Hashin
,
Z.
,
1970
, “
Complex Moduli of Viscoelastic Composites—I. General Theory and Application to Particulate Composites
,”
Int. J. Solids Struct.
,
6
, pp.
539
552
.10.1016/0020-7683(70)90029-6
2.
Adams
,
R. D.
, and
Bacon
,
D. G. C.
,
1973
, “
Measurement of the Flexural Damping Capacity and Dynamic Young's Modulus of Metals and Reinforced Plastics
,”
J. Phys. D: Appl. Phys.
,
6
(
1
), pp.
27
41
.10.1088/0022-3727/6/1/308
3.
Adams
,
R. D.
, and
Bacon
,
D. G. C.
,
1973
, “
Effect of Fibre Orientation and Laminate Geometry on the Dynamic Properties of CFRP
,”
J. Compos. Mater.
,
7
, pp.
402
428
.10.1177/002199837300700401
4.
Bagley
,
R. L.
, and
Torvik
,
P. J.
,
1983
, “
Fractional Calculus—A Different Approach to the Analysis of Viscoelastically Damped Structures
,”
AIAA J.
,
21
(
5
), pp.
741
748
.10.2514/3.8142
5.
Ni
,
R. G.
, and
Adams
,
R. D.
,
1984
, “
The Damping and Dynamic Moduli of Symmetric Laminated Composite Beams—Theoretical and Experimental Results
,”
J. Compos. Mater.
,
18
(
2
), pp.
104
121
.10.1177/002199838401800202
6.
Crane
,
R. M.
, and
Gillespie
,
J. W.
, Jr
.,
1992
, “
Analytical Model for Prediction of the Damping Loss Factor of Composite Materials
,”
Polym. Compos.
,
13
(
3
), pp.
179
190
.10.1002/pc.750130306
7.
Chang
,
S.
, and
Bert
,
C. W.
,
1972
, “
Analysis of Damping for Filamentary Composite Materials
,”
Composite Materials in Engineering Design
,
American Society for Metals
,
Metals Park, OH
, pp.
51
62
.
8.
Saravanos
,
D. A.
, and
Chamis
,
C. C.
,
1990
, “
Unified Micromechanics of Damping for Unidirectional and Off-Axis Fiber Composites
,”
J. Compos. Technol. Res.
,
12
(
1
), pp.
31
40
.10.1520/CTR10175J
9.
Saravanos
,
D. A.
, and
Chamis
,
C. C.
,
1990
, “
Mechanics of Damping for Fiber Composite Laminates Including Hygro-Thermal Effects
,”
AIAA J.
,
28
(
10
), pp.
1813
1819
.10.2514/3.10478
10.
Lesieutre
,
G. A.
,
1994
, “
On the Consistency of Complex Moduli for Transversely-Isotropic Viscoelastic Materials
,”
J. Compos. Mater.
,
28
(
5
), pp.
382
391
.10.1177/002199839402801802
11.
Cawley
,
P.
, and
Adams
,
R. D.
,
1978
, “
The Predicted and Experimental Natural Modes of Free-Free CFRP Plates
,”
J. Compos. Mater.
,
12
, pp.
336
347
.10.1177/002199837801200401
12.
Lin
,
D. X.
,
Ni
,
R. G.
, and
Adams
,
R. D.
,
1983
, “
Prediction and Measurement of the Vibrational Damping Parameters of Carbon and Glass Fibre-Reinforced Plastics Plates
,”
J. Compos. Mater.
,
18
, pp.
132
152
.10.1177/002199838401800204
13.
Bicos
,
S.
, and
Springer
,
G. S.
,
1989
, “
Vibrational Characteristics of Composite Panels With Cutouts
,”
AIAA J.
,
28
(
8
), pp.
1116
1122
.10.2514/3.10230
14.
Singh
,
S. P.
, and
Gupta
,
K.
,
1994
, “
Damped Free Vibrations of Layered Composite Cylindrical Shells
,”
J. Sound Vib.
,
172
(
2
), pp.
191
209
.10.1006/jsvi.1994.1169
15.
Schultz
,
A. B.
, and
Tsai
,
S. W.
,
1968
, “
Dynamic Moduli and Damping Ratios in Fiber-Reinforcement Composites
,”
J. Compos. Mater.
,
2
, pp.
368
379
.10.1177/002199836800200307
16.
Gibson
,
R. F.
, and
Plunkett
,
R.
,
1976
, “
Dynamic Mechanical Behavior of Fiber-Reinforced Composites: Measurements and Analysis
,”
J. Compos. Mater.
,
10
, pp.
325
341
.10.1177/002199837601000406
17.
Wren
,
G. G.
, and
Kinra
,
V. K.
,
1988
, “
Experimental Technique for Determining a Measure of Structural Damping
,”
J. Test. Eval.
,
16
(
1
), pp.
77
85
.10.1520/JTE11054J
18.
Berthelot
,
J.-M.
,
2006
, “
Damping Analysis of Laminated Beams and Plates Using the Ritz Method
,”
Compos. Struct.
,
74
, pp.
186
201
.10.1016/j.compstruct.2005.04.031
19.
Plagianakos
,
T. S.
, and
Saravanos
,
D. A.
,
2003
, “
Mechanics and Finite Elements for the Damped Dynamic Characteristics of Curvilinear Laminates and Composite Shell Structures
,”
J. Sound Vib.
,
263
(
2
), pp.
399
414
.10.1016/S0022-460X(02)01059-3
20.
Plagianakos
,
T. S.
, and
Saravanos
,
D. A.
,
2003
, “
Hybrid Multidamped Composite Plates With Viscoelastic Composite Plies and Shunted Piezoelectric Layers
,”
J. Intell. Mater. Syst. Struct.
,
14
(
1
), pp.
57
66
.10.1177/1045389X03014001006
21.
Plagianakos
,
T. S.
, and
Saravanos
,
D. A.
,
2009
, “
Higher-Order Layerwise Laminate Theory for the Prediction of Interlaminar Shear Stresses in Thick Composites and Sandwich Composite Plates
,”
Compos. Struct.
,
87
, pp.
23
35
.10.1016/j.compstruct.2007.12.002
22.
Saravanos
,
D. A.
,
Varelis
,
D.
,
Plagianakos
,
T. S.
, and
Chrysochoidis
,
N.
,
2006
, “
A Shear Beam Finite Element for the Damping Analysis of Tubular Laminated Composite Beams
,”
J. Sound Vib.
,
291
, pp.
802
823
.10.1016/j.jsv.2005.06.045
23.
Chortis
,
D. I.
,
Chrysochoidis
,
N. A.
, and
Saravanos
,
D. A.
,
2007
, “
Damped Structural Dynamics Models of Large Wind-Turbine Blades Including Material and Structural Damping
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
012076
.10.1088/1742-6596/75/1/012076
24.
Bhaskar
,
K.
, and
Librescu
,
L.
,
1995
, “
A Geometrically Non-Linear Theory for Laminated Anisotropic Thin-Walled Beams
,”
Int. J. Eng. Sci.
,
33
, pp.
1331
1344
.10.1016/0020-7225(94)00118-4
25.
Kosmatka
,
J. B.
,
1995
, “
An Improved Two-Node Finite Element for Stability and Natural Frequencies of Axial-Loaded Timoshenko Beams
,”
Comput. Struct.
,
57
(
1
), pp.
141
149
.10.1016/0045-7949(94)00595-T
26.
Di Sciuva
,
M.
, and
Icardi
,
U.
,
1995
, “
Large Deflection of Adaptive Multilayered Timoshenko Beams
,”
Compos. Struct.
,
31
, pp.
49
60
.10.1016/0263-8223(95)00001-1
27.
Engelstad
,
S. P.
,
Reddy
,
J. N.
, and
Knight
,
N. F.
,
1992
, “
Postbuckling Response and Failure Prediction of Graphite-Epoxy Plates Loaded in Compression
,”
AIAA J.
,
30
, pp.
2106
2113
.10.2514/3.11187
28.
Starnes
,
J. H.
, Jr.
, and
Rouse
,
M.
,
1985
, “
Postbuckling and Failure Characteristics of Selected Flat Rectangular Graphite/Epoxy Plates Loaded in Compressions
,”
AIAA J.
,
23
(
8
), pp.
1236
1246
.10.2514/3.9072
29.
Varelis
,
D.
, and
Saravanos
,
D. A.
,
2004
, “
Coupled Buckling and Postbuckling Analysis of Active Laminated Piezoelectric Composite Plates
,”
Int. J. Solids Struct.
,
41
, pp.
1519
1538
.10.1016/j.ijsolstr.2003.09.034
30.
Varelis
,
D.
, and
Saravanos
,
D. A.
,
2006
, “
Coupled Mechanics and Finite Element for Non-Linear Laminated Piezoelectric Shallow Shells Undergoing Large Displacements and Rotations
,”
Int. J. Numer. Methods Eng.
,
66
, pp.
1211
1233
.10.1002/nme.1590
31.
Varelis
,
D.
, and
Saravanos
,
D. A.
,
2006
, “
Small-Amplitude Free-Vibration Analysis of Piezoelectric Composite Plates Subject to Large Deflections and Initial Stresses
,”
ASME J. Vib. Acoust.
,
128
(1), pp.
41
49
.10.1115/1.2128637
32.
Kosmatka
,
J. B.
,
2008
, “
Damping Behaviour of Initially-Stressed Beams
,”
Proceedings of the 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
,
Schaumburg, IL
, April 7–10, Paper No.
AIAA
2008-2080.10.2514/6.2008-2080
33.
Kosmatka
,
J. B.
,
2010
, “
Damping Variations in Post-Buckled Structures Having Geometric Imperfections
,”
Proceedings of the 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference
, Orlando, FL, April 12–15, Paper No.
AIAA
2010-2630.10.2514/6.2010-2630
34.
Lesieutre
,
G. A.
,
2009
, “
How Membrane Loads Influence the Modal Damping of Flexural Structures
,”
AIAA J.
,
47
, pp.
1642
1646
.10.2514/1.37618
35.
Lesieutre
,
G. A.
,
1992
, “
Finite Elements for Dynamic Modeling of Uniaxial Rods With Frequency-Dependent Material Properties
,”
Int. J. Solids Struct.
,
29
(
12
), pp.
1567
1579
.10.1016/0020-7683(92)90134-F
36.
Lesieutre
,
G. A.
,
2001
, “
Damping in FE Models
,”
Encyclopedia of Vibration
,
D.
Ewins
and
S.
Rao
, eds.,
Academic
,
New York
, pp.
321
327
.
37.
Lesieutre
,
G. A.
,
2010
, “
Frequency-Independent Modal Damping for Flexural Structures via a Viscous ‘Geometric’ Damping Model
,”
J. Guid. Control Dynam.
,
33
(
6
), pp.
1931
1935
.10.2514/1.49864
38.
Chortis
,
D. I.
,
Chrysochoidis
,
N. A.
,
Varelis
,
D. S.
, and
Saravanos
,
D. A.
,
2011
, “
A Damping Mechanics Model and a Beam Finite Element for the Free-Vibration of Laminated Composite Strips Under In-Plane Loading
,”
J. Sound Vib.
,
330
(
23
), pp.
5660
5677
.10.1016/j.jsv.2011.06.025
39.
Center for Renewable Energy Sources
,
2001
–2004, “
Wind Turbine Rotor Blades for Enhanced Aeroelastic Stability and Fatigue Life Using Passively Damped Composites—DAMPBLADE FP5-ENERGIE
,”
Program No. ENK6-CT-2000-00320
.
You do not currently have access to this content.