The behavior of a buckled beam mechanism, which exhibits both bistability and negative stiffness, is investigated for the purposes of passive shock and vibration isolation. The vibration and shock isolation systems investigated in this research include linear, positive stiffness springs in parallel with the transverse motion of buckled beams, resulting in quasizero stiffness behavior. For vibration isolation systems, quasizero stiffness lowers the resonance frequency of the system, thereby reducing its transmissibility at frequencies greater than resonance. For shock isolation systems, quasizero stiffness provides constant-force shock isolation at tailored force levels, thereby enabling increased capacity for absorbing shock energy relative to a comparable positive stiffness system. Single- and double-beam configurations that exhibit first-mode buckling are utilized for vibration isolation, and a single beam that exhibits first- and third-mode buckling is used for shock isolation. For all cases, the static and dynamic behavior of each configuration is modeled analytically. The models are then used to design prototype vibration and shock isolation systems that are fabricated using selective laser sintering (SLS). The dynamic behavior of the systems in response to base excitations is determined experimentally, and the results are compared to model-based predictions. The vibration isolation prototypes display isolation levels that are tunable by varying the axial compression of the beams. Double-beam systems are shown to provide greater reductions in resonance frequency than single-beam systems for comparable levels of axial compression. However, low-frequency isolation capabilities are sensitive to the high levels of precision required to obtain low levels of system stiffness. The shock isolation prototype provides isolation at prespecified threshold levels of force or acceleration. In the prototype system, an input shock with a peak acceleration of approximately 7 g is reduced to a peak acceleration of the isolated mass of approximately 1 g. High levels of negative acceleration are observed in models and prototype systems when the buckled beam snaps back to its original position; however, models indicate that large negative accelerations can be mitigated using one-way dampers.

References

1.
Lakes
,
R. S.
,
Lee
,
T.
,
Bersie
,
A.
, and
Wang
,
Y. C.
,
2001
, “
Extreme Damping in Composite Materials With Negative-Stiffness Inclusions
,”
Nature
,
410
(6828), pp.
565
567
.10.1038/35069035
2.
Prasad
,
J.
, and
Diaz
,
A. R.
,
2009
, “
Viscoelastic Material Design With Negative Stiffness Components Using Topology Optimization
,”
Struct. Multidisc. Opt.
,
38
(6), pp.
583
597
.10.1007/s00158-008-0308-6
3.
Zhou
,
N.
, and
Liu
,
K.
,
2010
, “
A Tunable High-Static-Low-Dynamic Stiffness Vibration Isolator
,”
J. Sound Vib.
,
329
(9), pp.
1254
1273
.10.1016/j.jsv.2009.11.001
4.
Alabuzhev
,
P.
,
Gritchin
,
A.
,
Kim
,
L.
,
Migirenko
,
G.
,
Chon
,
V.
, and
Stepanov
,
P.
,
1989
,
Vibration Protecting and Measuring Systems With Quasi-Zero Stiffness
,
Hemisphere
,
New York
.
5.
Platus
,
D. L.
,
1999
, “
Negative-Stiffness-Mechanism Vibration Isolation Systems
,”
Optomechanical Engineering and Vibration Control Conference
, Denver, CO, July 20–23,
SPIE Proceedings
, Vol.
3786
, pp.
98
105
.10.1117/12.363841
6.
Lee
,
C.-M.
, and
Goverdovskiy
,
V. N.
,
2002
, “
Alternative Vibration Protecting Systems for Men-Operators of Transport Machines: Modern Level and Prospects
,”
J. Sound Vib.
,
249
(4), pp.
635
647
.10.1006/jsvi.2001.3839
7.
Lee
,
C.-M.
, and
Goverdovskiy
,
V. N.
,
2012
, “
A Multi-Stage High-Speed Railroad Vibration Isolation System With ‘Negative’ Stiffness
,”
J. Sound Vib.
,
331
(4), pp.
914
921
.10.1016/j.jsv.2011.09.014
8.
Sarlis
,
A.
,
Pasala
,
D.
,
Constantinou
,
M. C.
,
Reinhorn
,
A. M.
,
Nagarajaiah
,
S.
, and
Taylor
,
D. P.
,
2012
, “
Negative Stiffness Device for Seismic Protection of Structures
,”
J. Struct. Eng.
,
139
(7), pp.
1124
1133
.10.1061/(ASCE)ST.1943-541X.0000616
9.
Balandin
,
D. V.
,
Bolotnik
,
N. N.
, and
Pilkey
,
W. D.
,
2001
,
Optimal Protection from Impact, Shock, and Vibration
,
Taylor and Francis
,
Philadelphia
.
10.
“Passive Shock Isolation,”
2010
, Barry Controls, Hopkinton, MA, accessed April 22,
2012
, www.barrycontrols.com/uploads/tech/PassiveShock.pdf
11.
Kent
,
R. W.
,
Balandin
,
D. V.
,
Bolotnik
,
N. N.
,
Pilkey
,
W. D.
, and
Purtsezov
,
S. V.
,
2007
, “
Optimal Control of Restraint Forces in an Automobile Impact
,”
ASME J. Dyn. Sys., Meas., Control
,
129
(4), pp.
415
424
.10.1115/1.2718240
12.
Woodard
,
S. E.
, and
Housner
,
J. M.
,
1991
, “
Nonlinear Behavior of a Passive Zero-Spring-Rate Suspension System
,”
J. Guid., Control, Dyn.
,
14
(
1
), pp.
84
89
.10.2514/3.20608
13.
Platus
,
D. L.
,
1992
, “
Negative-Stiffness-Mechanism Vibration Isolation Systems
,”
Proc. SPIE, Vib. Control Microelect., Opt., Metrol.
,
1619
, pp.
44
54
.10.1117/12.56823
14.
Rivin
,
E. I.
,
2003
,
Passive Vibration Isolation
,
ASME
,
New York
.
15.
Freakley
,
P. K.
, and
Payne
,
A. R.
,
1978
,
Theory and Practice of Engineering With Rubber
,
Applied Science
,
London
.
16.
Kovacic
,
I.
,
Brennan
,
M. J.
, and
Waters
,
T. P.
,
2008
, “
A Study of a Nonlinear Vibration Isolator With a Quasi-Zero Stiffness Characteristic
,”
J. Sound Vib.
,
315
(
3
), pp.
700
711
.10.1016/j.jsv.2007.12.019
17.
Carrella
,
A.
,
Brennan
,
M. J.
,
Kovacic
,
I.
, and
Waters
,
T. P.
,
2009
, “
On the Force Transmissibility of a Vibration Isolator With Quasi-Zero-Stiffness
,”
J. Sound Vib.
,
322
(
4–5
), pp.
707
717
.10.1016/j.jsv.2008.11.034
18.
Le
,
T. D.
, and
Ahn
,
K. K.
,
2011
, “
A Vibration Isolation System in Low Frequency Excitation Region Using Negative Stiffness Structure for Vehicle Seat
,”
J. Sound Vib.
,
330
(
26
), pp.
6311
6335
.10.1016/j.jsv.2011.07.039
19.
Winterflood
,
J.
,
Barber
,
T. A.
, and
Blair
,
D. G.
,
2002
, “
Mathematical Analysis of an Euler Spring Vibration Isolator
,”
Phys. Lett. A
,
300
(
2–3
), pp.
131
139
.10.1016/S0375-9601(02)00259-1
20.
Winterflood
,
J.
,
Blair
,
D. G.
, and
Slagmolen
,
B.
,
2002
, “
High Performance Vibration Isolation Using Springs in Euler Column Buckling Mode
,”
Phys. Lett. A
,
300
(
2–3
), pp.
122
130
.10.1016/S0375-9601(02)00258-X
21.
Virgin
,
L. N.
, and
Davis
,
R. B.
,
2003
, “
Vibration Isolation Using Buckled Struts
,”
J. Sound Vib.
,
260
(
5
), pp.
965
973
.10.1016/S0022-460X(02)01177-X
22.
Bonello
,
P.
,
Brennan
,
M. J.
, and
Elliott
,
S. J.
,
2005
, “
Vibration Control Using an Adaptive Tuned Vibration Absorber With a Variable Curvature Stiffness Element
,”
Smart Mater. Struct.
,
14
(
5
), pp.
1055
1065
.10.1088/0964-1726/14/5/044
23.
Bonello
,
P.
,
Brennan
,
M. J.
,
Elliott
,
S. J.
,
Vincent
,
J. F. V.
, and
Jeronimidis
,
G.
,
2005
, “
Designs for an Adaptive Tuned Vibration Absorber With Variable Shape Stiffness Element
,”
Proc. R. Soc. A
,
461
(
2064
), pp.
3955
3976
.10.1098/rspa.2005.1547
24.
Kashdan
,
L.
,
Seepersad
,
C. C.
,
Haberman
,
M. R.
, and
Wilson
,
P. S.
,
2012
, “
Design, Fabrication, and Evaluation of Negative Stiffness Elements Using Selective Laser Sintering
,”
Rapid Prototyping Journal
,
18
(
3
), pp.
194
200
.10.1108/13552541211218108
25.
Karnopp
,
D. C.
,
Margolis
,
D. L.
, and
Rosenberg
,
R. C.
,
2012
,
System Dynamics: Modeling, Simulation, and Control of Mechatronic Systems
,
Wiley
,
Hoboken, NJ
.
26.
Paynter
,
H. M.
,
2000
, “
The Gestation and Birth of Bond Graphs
,” accessed April 22,
2012
, www.me.utexas.edu/~longoria/paynter/hmp/Bondgraphs.html
27.
Fulcher
,
B. A.
,
2012
, “
Evaluation of Systems Containing Negative Stiffness Elements for Vibration and Shock Isolation
,” M.S. thesis, The University of Texas at Austin, Austin, TX.
28.
Vangbo
,
M.
,
1998
, “
An Analytical Analysis of a Compressed Bistable Buckled Beam
,”
Sens. Actuators A
,
69
(
3
), pp.
212
216
.10.1016/S0924-4247(98)00097-1
29.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
IEEE J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.10.1109/JMEMS.2004.825308
You do not currently have access to this content.