The response of a single degree-of-freedom spring mass system connected to a vibration absorber with a friction damper and subjected to a sinusoidal excitation is considered in this paper. Two possible configurations of the friction damper, rigid and flexible, are explored in details. Optimization of the parameters of absorbers with both these damper configurations to minimize the peak value of the frequency response of the primary system is presented. Results from this minimax optimization approach are compared to the classical solutions for a vibration absorber with linear viscous damper.
Issue Section:
Research Papers
References
1.
Den Hartog
, J. P.
, 1985
, Mechanical Vibrations
, Dover Publications
, New York.2.
Sinha
, A.
, 2010
, Vibration of Mechanical Systems
, Cambridge University Press
, New York.3.
Sinha
, A.
, 2009
, “Optimal Damped Vibration Absorber for Narrow Band Random Excitations: A Mixed H2/H∞ Optimization
,” Probab. Eng. Mech.
, 24
(2
), pp. 251
–254
.4.
Sinha
, A.
, 2015
, “Optimal Damped Vibration Absorber: Including Multiple Modes and Excitation Due to Rotating Unbalance
,” ASME J. Vib. Acoust.
, 137
(6
), p. 064501
.5.
Asami
, T.
, and Nishihara
, O.
, 2003
, “Closed-Form Exact Solution to H∞ Optimization of Dynamic Vibration Absorbers (Application to Different Transfer Functions and Damping Systems)
,” ASME J. Vib. Acoust.
, 125
(3
), pp. 398
–405
.6.
Ricciardelli
, F.
, and Vickery
, B. J.
, 1999
, “Tuned Vibration Absorbers With Dry Friction Damping
,” J. Earthquake Eng. Struct. Dyn.
, 28
(7), pp. 707
–723
.7.
Gewei
, Z.
, and Basu
, B.
, 2010
, “A Study on Friction-Tuned Mass Damper: Harmonic Solution and Statistical Linearization
,” J. Vib. Control
, 17
(5
), pp. 721
–731
.8.
Pisal
, A. Y.
, and Jangid
, R. S.
, 2016
, “Dynamic Response of Structure With Tuned Mass Friction Damper
,” Int. J. Adv. Struct. Eng.
, 8
(4), pp. 363
–377
.9.
Hartung
, A.
, Schmieg
, H.
, and Vielsack
, P.
, 2001
, “Passive Vibration Absorber With Dry Friction
,” Arch. Appl. Mech.
, 71
(6–7), pp. 463
–472
.10.
Abe
, M.
, 1996
, “Tuned Mass Dampers for Structures With Bilinear Hysteresis
,” ASCE J. Eng. Mech.
, 122
(8
), pp. 797
–800
.11.
Sinha
, A.
, and Griffin
, J. H.
, 1985
, “Stability of Limit Cycles in Frictionally Damped and Aerodynamically Unstable Rotor Stages
,” J. Sound Vib.
, 103
(3
), pp. 341
–356
.12.
Fang
, J.
, Wang
, Q.
, and Wang
, S.
, 2012
, “Min-Max Criterion to the Optimal Design of Vibration Absorber in a System With Coulomb Friction and Viscous Damping
,” Nonlinear Dyn.
, 70
(1), pp. 393–400.13.
Vidmar
, B. J.
, Feeny
, B. F.
, Shaw
, S.
, Haddow
, A. G.
, Geist
, B. K.
, and Verhanovitz
, N. J.
, 2012
, “The Effects of Coulomb Friction on the Performance of Centrifugal Pendulum Vibration Absorbers
,” Nonlinear Dyn.
, 69
(1–2), pp. 589
–600
.14.
Sinha
, A.
, 2016
, “Vibration Absorbers for a Mistuned Bladed Disk
,” ASME
Paper No. GT2016-56076.15.
Cha
, D.
, and Sinha
, A.
, 2010
, “Computation of the Optimal Normal Load for a Mistuned and Frictionally Damped Bladed Disk Assembly Under Different Types of Excitation
,” ASME J. Comput. Nonlinear Dyn.
, 6
(2
), p. 021012
.16.
Yang
, B. D.
, and Menq
, C. H.
, 1998
, “Characterization of 3D Contact Kinematics and Prediction of Resonant Response of Structures Having 3D Frictional Constraint
,” J. Sound Vib.
, 217
(5
), pp. 909
–925
.17.
Sanliturk
, K. Y.
, Ewins
, D. J.
, Elliott
, R.
, and Green
, J.
, 2001
, “Friction Damper Optimization: Simulation of Rainbow Tests
,” ASME J. Eng. Gas Turbines Power
, 123
(4
), pp. 930
–939
.18.
Melanie
, M.
, 1996
, An Introduction to Genetic Algorithms
, MIT Press
, Cambridge, MA
.19.
MATLAB
, 2016
, “Matlab
,” The MathWorks, Inc., Natick, MA.20.
Bathe
, K.-J.
, 1996
, Finite Element Procedures
, 1st ed., Prentice Hall
, Upper Saddle River, NJ
.Copyright © 2018 by ASME
You do not currently have access to this content.