Abstract

The aim of this paper is to apply and compare four reduced-order modeling strategies to compute the unbalanced vibration response of a rotating machine and evaluate its robustness to random matrix perturbation. The full finite element model of the rotor is built using a rotordynamic open source software (ROSS), and is reduced through different methods, namely: (1) modal reduction, (2) Krylov subspace, (3) Guyan reduction, and (4) system equivalent reduction–expansion process (SEREP). To evaluate the robustness of the obtained results, this paper proposes to perturb the stiffness matrix obtained using the reduced-order models applying the random matrix theory. A simple rotor (three discs) and a more complex gas turbine model (21 discs) are analyzed. Results show that Guyan is not the most appropriate reduction technique for the systems analyzed, but the other three strategies yield good results. In addition, the same random perturbation in the reduced-order stiffness matrices produces a similar level of uncertainty on the stochastic unbalanced responses.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Glaessgen
,
E. H.
, and
Stargel
,
D. S.
,
2012
, “
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
,”
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
,
Honolulu, HI
.
2.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2405
2415
.
3.
Ritto
,
T. G.
, and
Rochinha
,
F. A.
,
2021
, “
Digital Twin, Physics-Based Model, and Machine Learning Applied to Damage Detection in Structures
,”
Mech. Syst. Signal Process.
,
155
.
4.
Rezende
,
S. W. F.
,
Cavallini Jr
,
A. P.
, and
Steffen Jr
,
V.
,
2023
, “
Digital Twin of an Offshore Riser Systems for Time Series Prediction Using Deep Learning Models
,”
Proceedings of the XIX International Symposium on Dynamic Problems of Mechanics, DINAME
,
Pirenópolis, GO
, pp.
1
8
.
5.
Ohayon
,
R.
, and
Soize
,
C.
,
2017
, “
Computational Vibroacoustics in Low- and Medium- Frequency Bands: Damping, ROM, and UQ Modeling
,”
Appl. Sci. (Switzerland)
,
7
(
6
), pp.
1
39
.
6.
Freund
,
R. W.
,
2003
, “
Model Reduction Methods Based on Krylov Subspaces
,”
Acta Num.
,
12
, pp.
267
319
.
7.
Guyan
,
R. J.
,
1965
, “
Reduction of Stiffness and Mass Matrices
,”
AIAA J.
,
3
(
2
), p.
380
.
8.
O’Callahan
,
J. C.
,
Avitabile
,
P.
, and
Riemer
,
R.
,
1989
, “
System Equivalent Reduction Expansion Process (SEREP)
,”
Proceedings of the International Modal Analysis Conference
,
Las Vegas, NV
.
9.
Mehta
,
M. L.
,
2014
,
Random Matrices, Revised and Enlarged
,
2nd ed.
,
Academic Press, New York
.
10.
Ritto
,
T. G.
, and
Fabro
,
A. T.
,
2019
, “
Investigation of Random Matrix Applications on Structural Dynamics Using a Tensor Decomposition
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
41
(
8
), pp.
1
11
.
11.
Soize
,
C.
,
2000
, “
Nonparametric Model of Random Uncertainties for Reduced Matrix Models in Structural Dynamics
,”
Probab. Eng. Mech.
,
15
(
3
), pp.
277
294
.
12.
Batou
,
A.
, and
Nabarrete
,
A.
,
2018
, “
Nonparametric Probabilistic Approach of Uncertainties With Correlated Mass and Stiffness Random Matrices
,”
Mech. Syst. Signal Process.
,
111
, pp.
102
112
.
13.
Fontanela
,
F.
,
Silva
,
O. M.
,
Lenzi
,
A.
, and
Ritto
,
T. G.
,
2016
, “
Development of a Stochastic Dynamical Model for Hermetic Compressor’s Components With Experimental Investigation
,”
Mech. Syst. Signal Process.
,
76–77
, pp.
712
728
.
14.
Soize
,
C.
,
2013
, “
Stochastic Modeling of Uncertainties in Computational Structural Dynamics—Recent Theoretical Advances
,”
J. Sound Vib.
,
332
(
10
), pp.
2379
2395
.
15.
Datz
,
J.
,
Karimi
,
M.
, and
Marburg
,
S.
,
2021
, “
Effect of Uncertainty in the Balancing Weights on the Vibration Response of a High-Speed Rotor
,”
ASME J. Vib. Acoust.
,
143
(
6
), p. 061002.
16.
Carvalho
,
V. N.
,
Rende
,
B. F. R.
,
Silva
,
A. D. G.
,
Ap Cavalini
,
A.
, and
Steffen
,
V.
,
2018
, “
Robust Balancing Approach for Rotating Machines Based on Fuzzy Logic
,”
ASME J. Vib. Acoust.
,
140
(
5
), p.
051018
.
17.
Koutsovasilis
,
P.
, and
Beitelschmidt
,
M.
,
2008
, “
Comparison of Model Reduction Techniques for Large Mechanical Systems : A Study on an Elastic Rod
,”
Multisyst. Dyn.
,
20
(
2
), pp.
111
128
.
18.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.
19.
Azeez
,
M. F. A.
, and
Vakakis
,
A. F.
,
2001
, “
Proper Orthogonal Decomposition (POD) of a Class of Vibroimpact Oscillations
,”
J. Sound Vib.
,
240
(
5
), pp.
859
889
.
20.
Ritto
,
T. G.
,
Buezas
,
F. S.
, and
Sampaio
,
R.
,
2011
, “
A New Measure of Efficiency for Model Reduction: Application to a Vibroimpact System
,”
J. Sound Vib.
,
330
(
9
), pp.
1977
1984
.
21.
Lecun
,
Y.
,
Bengio
,
Y.
, and
Hinton
,
G.
,
2015
, “
Deep Learning
,”
Nature
,
521
(
7553
), pp.
436
444
.
22.
Schmidhuber
,
J.
,
2015
, “
Deep Learning in Neural Networks: An Overview
,”
Neural Netw.
,
61
, pp.
85
117
.
23.
Zuo
,
Y.
, and
Wang
,
J.
,
2015
, “
A Component Mode Synthesis Method for 3-d Finite Element Models of Aero-engines
,”
J. Mech. Sci. Technol.
,
29
(
12
), pp.
5157
5166
.
24.
Craig
,
R. R.
,
1995
, “
Substructure Methods in Vibration
,”
J. Vib. Acoust. Trans. ASME
,
117
, pp.
207
213
.
25.
Khulief
,
Y. A.
, and
Mohiuddin
,
M. A.
,
1997
, “
On the Dynamic Analysis of Rotors Using Modal Reduction
,”
Finite Elements Anal. Des.
,
26
(
1
), pp.
41
55
.
26.
Lu
,
K.
,
Jin
,
Y.
,
Huang
,
P.
,
Zhang
,
F.
,
Zhang
,
H.
,
Fu
,
C.
, and
Chen
,
Y.
,
2021
, “
The Applications of POD Method in Dual Rotor-Bearing Systems With Coupling Misalignment
,”
Mech. Syst. Signal Process.
,
150
.
27.
Das
,
A. S.
, and
Dutt
,
J. K.
,
2012
, “
A Reduced Rotor Model Using Modified SEREP Approach for Vibration Control of Rotors
,”
Mech. Syst. Signal Process.
,
26
(
1
), pp.
167
180
.
28.
Wagner
,
M. B.
,
Younan
,
A.
,
Allaire
,
P.
, and
Cogill
,
R.
,
2010
, “
Model Reduction Methods for Rotor Dynamic Analysis: A Survey and Review
,”
Int. J. Rot. Mach.
,
2010
.
29.
Timbó
,
R.
,
Martins
,
R.
,
Bachmann
,
G.
,
Rangel
,
F.
,
Mota
,
J.
,
Valério
,
J.
, and
Ritto
,
T. G.
,
2020
, “
ROSS—Rotordynamic Open Source Software
,”
J. Open Source Softw.
,
5
, p.
2120
.
30.
Ohayon
,
R.
, and
Soize
,
C.
,
2014
,
Advanced Computational Vibroacoustics: Reduced-Order Models and Uncertainty Quantification
, Cambridge University Press.
31.
Ritto
,
T. G.
,
Soize
,
C.
,
Rochinha
,
F.
, and
Sampaio
,
R.
,
2014
, “
Dynamic Stability of a Pipe Conveying Fluid With an Uncertain Computational Model
,”
J. Fluids Struct.
,
49
, pp.
412
426
.
32.
Lim
,
S.-H.
,
Bladh
,
R.
,
Castanier
,
M. P.
, and
Pierre
,
C.
,
2007
, “
Compact, Generalized Component Mode Mistuning Representation for Modeling Bladed Disk Vibration
,”
AIAA J.
,
45
(
9
), pp.
2285
2298
.
33.
Chopra
,
A. K.
,
1996
, “
Modal Analysis of Linear Dynamic Systems: Physical Interpretation
,”
J. Struct. Eng.
,
122
(
5
), pp.
517
527
.
34.
Chopra
,
A. K.
,
2001
,
Dynamics of Structures: Theory and Applications
,
Prentice Hall
,
Upper Saddle River, NJ
.
35.
Irvine
,
T.
,
2015
, “
Effective Modal Mass and Modal Participation Factors
,” https://vibrationdata.com/tutorials2/ModalMass.pdf, Accessed March 15, 2024.
36.
Eid
,
R.
,
Salimbahrami
,
B.
,
Lohmann
,
B.
,
Rudnyi
,
E. B.
, and
Korvink
,
J. G.
,
2006
, “Parametric Order Reduction of Proportionally Damped Second Order Systems.” Tech. Rep., Automation Control, TRAC-1, Technische Universitat Munchen.
37.
Bai
,
Z.
,
2002
, “
Krylov Subspace Techniques for Reduced-Order Modeling of Large-Scale Dynamical Systems
,”
Appl. Numer. Math.
,
43
(
1–2
), pp.
9
44
.
38.
Barrett
,
R.
,
Berry
,
M.
,
Chan
,
T. F.
,
Demmel
,
J.
,
Donato
,
J. M.
,
Dongarra
,
J.
,
Eijkhout
,
V.
,
Pozo
,
R.
,
Romine
,
C.
, and
van der Vorst
,
H.
,
1994
,
Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods
, 2nd ed.,
SIAM
.
39.
Lalanne
,
M.
, and
Ferraris
,
G.
,
1998
,
Rotordynamics Prediction in Engineering
, 2nd ed.,
Wiley
,
New York
.
40.
Batou
,
A.
, and
Soize
,
C.
,
2012
, “
Rigid Multibody System Dynamics With Uncertain Rigid Bodies
,”
Multisyst. Dyn.
,
27
(
3
), pp.
285
319
.
41.
Kassem
,
M.
,
Soize
,
C.
, and
Gagliardini
,
L.
,
2011
, “
Structural Partitioning of Complex Structures in the Medium-Frequency Range. An Application to an Automotive Vehicle
,”
J. Sound Vib.
,
330
(
5
), pp.
937
946
.
42.
Ritto
,
T. G.
,
Soize
,
C.
, and
Sampaio
,
R.
,
2009
, “
Non-linear Dynamics of a Drill-String With Uncertain Model of the Bit-Rock Interaction
,”
Int. J. Non-Linear Mech.
,
44
(
8
), pp.
865
876
.
43.
Murthy
,
R.
,
Mignolet
,
M. P.
, and
El-Shafei
,
A.
,
2010
, “
Nonparametric Stochastic Modeling of Uncertainty in Rotordynamics—Part 1: Formulation
,”
J. Eng. Gas Turbines Power
,
132
(
9
), p.
0
.
44.
Pereira
,
L. V.
, and
Ritto
,
T. G.
,
2021
, “
Proper Orthogonal Decomposition and Smooth Orthogonal Decomposition Approaches for Pattern Recognition: Application to a Gas Turbine Rub-Impact Fault
,”
J. Sound Vib.
,
511
, p.
0
.
45.
Pereira
,
L. V.
, and
Ritto
,
T. G.
,
2023
, “The Influence of Proper Orthogonal Decomposition and Smooth Orthogonal Decomposition on Rotor Unbalance Fault Classification.”
Proceedings of the XIX International Symposium on Dynamic Problems of Mechanics, DINAME
, Pirenópolis, GO, Brazil, pp.
1
6
.
46.
API
,
2010
, API 684: Lateral Critical Speeds, Unbalance Response, Stability, Train Torsionals, and Rotor Balancing, Standard, API Publishing Services, Washington, DC.
You do not currently have access to this content.